• Title/Summary/Keyword: Budding yeast

Search Result 88, Processing Time 0.023 seconds

Construction of spSac3 Null Mutants Defective in mRNA Export (mRNA의 핵에서 세포질로의 이동에 관여하는 spSac3 유전자의 결실돌연변이 제조와 특성 조사)

  • Kang Sook-Hee;Yoon Jin-Ho
    • Korean Journal of Microbiology
    • /
    • v.42 no.2
    • /
    • pp.153-155
    • /
    • 2006
  • We constructed the null mutants of fission yeast Schizosaccharomyces pombe spSac3 gene that is homologous to budding yeast Saccharomyces cerevisiae SAC3 involved in mRNA export out of nucleus. Tetrad analysis showed that the spSac3 is essential for vegetative growth. The spSac3 mutants harboring pREP81X-spSac3 plasmid showed poly(A)+ RNA export defect in the presence of thiamine. These results suggest that spSac3 is also involved in mRNA export from the nucleus.

The Expanding Significance of Inositol Polyphosphate Multikinase as a Signaling Hub

  • Kim, Eunha;Ahn, Hyoungjoon;Kim, Min Gyu;Lee, Haein;Kim, Seyun
    • Molecules and Cells
    • /
    • v.40 no.5
    • /
    • pp.315-321
    • /
    • 2017
  • The inositol polyphosphates are a group of multifunctional signaling metabolites whose synthesis is catalyzed by a family of inositol kinases that are evolutionarily conserved from yeast to humans. Inositol polyphosphate multikinase (IPMK) was first identified as a subunit of the arginine-responsive transcription complex in budding yeast. In addition to its role in the production of inositol tetrakis- and pentakisphosphates ($IP_4$ and $IP_5$), IPMK also exhibits phosphatidylinositol 3-kinase (PI3-kinase) activity. Through its PI3-kinase activity, IPMK activates Akt/PKB and its downstream signaling pathways. IPMK also regulates several protein targets non-catalytically via protein-protein interactions. These non-catalytic targets include cytosolic signaling factors and transcription factors in the nucleus. In this review, we highlight the many known functions of mammalian IPMK in controlling cellular signaling networks and discuss future challenges related to clarifying the unknown roles IPMK plays in physiology and disease.

A case of Cryptococcal Meningitis (크립토코크스 뇌막염 1례 보고)

  • O, Khyoung-Yhun;Byun, Young-Ju;Park, Choong-Suh;Jeon, Chang-Ho;Kim, Chung-Sook
    • Journal of Yeungnam Medical Science
    • /
    • v.4 no.1
    • /
    • pp.139-143
    • /
    • 1987
  • The clinical picture and CSF findings in cryptococcus meningitis may be identical with those of tuberculous meningitis. The differential diagnosis can be made by finding the budding yeast organism in the counting chamber or in stained smear, the detection of cryptococcal antigen in CSF by the latex agglutination test, and by culture of the fungus on Sabouraud agar. We experienced a case of cryptococcal meningitis in the 48 years old woman, which was confirmed by Indian ink preparation and culture.

  • PDF

Effects of spTho1 Deletion and Over-Expression on mRNA Export in Fission Yeast (분열효모에서 spTho1 유전자의 결실과 과발현이 생장 및 mRNA Export에 미치는 영향)

  • Cho, Ye-Seul;Yoon, Jin-Ho
    • Korean Journal of Microbiology
    • /
    • v.46 no.4
    • /
    • pp.401-404
    • /
    • 2010
  • Tho1 is a RNA-binding protein that assembles co-transcriptionally onto the nascent mRNA and is thought to be involved in mRNP biogenesis and mature mRNA export to cytoplasm in budding yeast. In fission yeast Schizosaccharomyces pombe, a homologue of THO1 (spTho1) was identified based on sequence alignment. A deletion mutant in a diploid strain was constructed by replacing one of spTho1-coding region with an ura4+ gene using one-step gene disruption method. Tetrad analysis showed that the spTho1 was not essential for growth. The spTho1 mutant did not show any defects of bulk mRNA export. However, over-expression of spTho1 from strong nmt1 promoter caused the growth defects and accumulation of poly(A)$^+$ RNA in the nucleus. These results suggest that spTho1 is involved in mRNA export from the nucleus to cytoplasm though it is not essential.

Function of rax2p in the Polarized Growth of Fission Yeast

  • Choi, Eunsuk;Lee, Kyunghee;Song, Kiwon
    • Molecules and Cells
    • /
    • v.22 no.2
    • /
    • pp.146-153
    • /
    • 2006
  • Cell polarity is critical for the division, differentiation, migration, and signaling of eukaryotic cells. RAX2 of budding yeast encodes a membrane protein localized at the cell cortex that helps maintain the polarity of the bipolar pattern. Here, we designate SPAC6f6.06c as $rax2^+$ of Schizosaccharomyces pombe, based on its sequence homology with RAX2, and examine its function in cell polarity. S. pombe $rax2^+$ is not essential, but ${\Delta}rax2$ cells are slightly smaller and grow slower than wild type cells. During vegetative growth or arrest at G1 by mutation of cdc10, deletion of $rax2^+$ increases the number of cells failing old end growth just after division. In addition, this failure of old end growth is dramatically increased in ${\Delta}tea1{\Delta}rax2$, pointing to genetic interaction of $rax2^+$ with $tea1^+$. ${\Delta}rax2$ cells contain normal actin and microtubule cytoskeletons, but lack actin cables, and the polarity factor for3p is not properly localized at the growing tip. In ${\Delta}rax2$ cells, and endogenous rax2p is localized at the cell cortex of growing cell tips in an actin- and microtubule-dependent manner. However, ${\Delta}rax2$ cells show no defects in cell polarity during shmoo formation and conjugation. Taken together, these observations suggest that rax2p controls the cell polarity of fission yeast during vegetative growth by regulating for3p localization.

Quantitative Profiling of Dual Phosphorylation of Fus3 MAP Kinase in Saccharomyces cerevisiae

  • Hur, Jae-Young;Kang, Gum-Yong;Choi, Min-Yeon;Jung, Jin Woo;Kim, Kwang-Pyo;Park, Sang-Hyun
    • Molecules and Cells
    • /
    • v.26 no.1
    • /
    • pp.41-47
    • /
    • 2008
  • Mitogen-activated protein kinase (MAPK) signaling is a crucial component of eukaryotic cells; it plays an important role in responses to extracelluar stimuli and in the regulation of various cellular activities. The signaling cascade is evolutionarily conserved in the eukaryotic kingdom from yeast to human. In response to a variety of extracellular signals, MAPK activity is known to be regulated via phosphorylation of a conserved $T{\times}Y$ motif at the activation loop in which both threonine and tyrosine residues are phosphorylated by the upstream kinase. However, the mechanism by which both residues are phosphorylated continues to remain elusive. In the budding yeast, Saccharomyces cerevisiae, Fus3 MAPK is involved in the mating signaling pathway. In order to elucidate the functional mechanism of MAPK activation, we quantitatively profiled phosphorylation of the $T{\times}Y$ motif in Fus3 using mass spectrometry (MS). We used synthetic heavy stable isotope-labeled phosphopeptides and nonphosphopeptides corresponding to the proteolytic $T{\times}Y$ motif of Fus3 and accompanying data-dependent tandem MS to quantitatively monitor dynamic changes in the phosphorylation events of MAPK. Phosphospecific immunoblotting and the MS data suggested that the tyrosine residue is dynamically phosphorylated upon stimulation and that this leads to dual phosphorylation. In contrast, the magnitude of threonine phosphorylation did not change significantly. However, the absence of a threonine residue leads to hyperphosphorylation of the tyrosine residue in the unstimulated condition, suggesting that the threonine residue contributes to the control of signaling noise.

Comparative Ultrastructural Study on four Candida species and Cryptococcus neoformans (Candide species와 Cryptococcus neoformans의 전자현미경적 미세구조에 관한 비교 연구)

  • Yoon, Chul-Jong;Kim, Sung-Gwon;Kim, Soo-Sung;Chi, Je-Geun
    • Applied Microscopy
    • /
    • v.23 no.2
    • /
    • pp.97-106
    • /
    • 1993
  • This study was done to elucidate the electron microscopic characteristics of certain pathogenic fungi. Four Candida species, (C. albicans, C. tropicalis, C. parapsilosis and C. glabrate) and Cryptococcus neoformans were cultured for 3 days at $30^{\circ}C$ in the Sabouraud dextrose medium. After incubation, they were stored at $4^{\circ}C$ for 24hours. Fine structures were analyzed by morphometry, and Tukey's HSD test was used for statistics. On scanning electron microscopy C. albicans and C. neoformans were similar in size but different in shape, showing sphero-shape or ovalo-shape in C. neoformans. Surface of C. neoformans was coarse and spiny, but Candida species examined were uniformly smooth. In size, C. glabrata was the smallest among them. Budding scar as seen on the surface of Candida species by the number ranging from 1 to 7. Cryptococcus neoformans showed one or two budding scar. On transmission electron microscopy the cytoplasm of most yeast cells showed plentiful glycogen particles, mitochondria, peroxisomes and vacuoles. However, cell walls were different among four Candida species and Cryptococcus neoformans. The cell wall of Candida species consisted of fibrous layer, that was electron dense layer and transparent layer, in contrast to Cryptococcus neoformans consisted of electron dense layer with lamellar structure. This layer was two times thicker than that of Candida species. The outer layer of cell wall was of radiating pattern.

  • PDF

Isolation and Characterization of Cryptococcus sp. CS-2 Secreting Polygalacturonase from Soil (토양으로부터 Cryptococcus sp. CS-2의 분리 및 균주가 분비하는 Polygalacturonase의 특성에 관한 연구)

  • 강희경;문명님;임채영;양영기
    • Korean Journal of Microbiology
    • /
    • v.35 no.2
    • /
    • pp.158-163
    • /
    • 1999
  • A ploygalacturonase-produchg yeast was isolated from Cheju soil by selective eivichment media. One strain which has the highesl activity of polygalacturonase was selected. The characle~ishcs of the strain CS-2 were as follows: CS-2 utilized xylose. sucrose, maltose, u.ehalose, cellobiose. melibiose, lactose, raffinose, inosiiol, dulicilol, and dextrose, but did not utilized galactose, nitrate. nit~te, and lysine. Growth of CS-2 was inhibited by cyclohexamide, 1% acetic acid, and high concenaation (over 50%) of glucose. It grew at $30^{\circ}C$ but did 'IIOL $35^{\circ}C$. The cell size ofthe strain CS-2 was 2.9 p ~ n in length and 1.3 $\mu$ in diameter. Vegetable reproductmn was multiple budding and ascospre was present I to 4. Pseudomycelia or true myceliua formation were not observed In any of the cullureq. These results suggest that strain CS-2 is most likely a strain related Cryptococcus spp. (Cryptococcu spp. CS-2). When polygalacturonase or ihe yeast was induced by addition of polygalactoronic acid, polygalacturonase activity was detected in culture supernatent. There was a peak of specific activity a1 he mid-stationary phase(3 days culture) of growth. Polygalacturonase specific activity of Crylmcoccus sp. CS-2 was 2.96 unitsling. The molecular weighl ol'polygalacturonase was showed to be 46 KDa by both SDS-PAGE and activity stailling.

  • PDF

Isolation and Identification of Zinc-Enriched Yeast Saccharomyces cerevisiae FF-10 from the Tropical Fruit Rambutan (열대과일 Rambutan으로부터 아연 고함유 효모 Saccharomyces cerevisiae FF-10 분리 및 특성)

  • Cha, Jae-Young;Heo, Jin-Sun;Kim, Jung-Wook;Lee, Seon-Woo;Cho, Young-Su
    • Journal of Life Science
    • /
    • v.18 no.4
    • /
    • pp.447-453
    • /
    • 2008
  • Zinc is an essential trace element in Human Being. Highly zinc containing yeast strain isolated from the tropical fruit, rambutan and the zinc concentration in this yeast strain was 306 ppm (30.6 mg%)per dry matter basis. This strain was found to be a rounded type, normal size, and multi-polar budding. Phylogenetic analysis using the ITS1-5.85 rDNA sequences from isolated strain is most similar to yeast Saccharomyces cerevisiae at the level of nucleotide sequence identity at 99%. This strain was produced alcohol by about 12% using fully colonized koji-rice with Aspergillus oryzae. In conclusion, the isolated strain was found to be closely related to the S. cerevisiae based on its morphological and physiological properties, and alcohol fermentation. The phylogenetic analysis of strain FF-10 using ITS 5.8S rDNA sequence data also supported the closely related to the S. cerevisiae. Accordingly, the isolated yeast was named as S. cerevisiae FF-10. Further studies on the best culture conditions for zinc production from zinc-enriched S. cerevisiae FF-10 are under investigation.

Effect of Tex1/THOC3, a component of THO complex, on growth and mRNA export in fission yeast (분열효모에서 THO 복합체의 구성요소인 Tex1/THOC3가 생장 및 mRNA 방출에 미치는 영향)

  • Bae, Soo Jeong;Koh, Eun-Jin;Yoon, Jin Ho
    • Korean Journal of Microbiology
    • /
    • v.53 no.4
    • /
    • pp.292-296
    • /
    • 2017
  • In eukaryote, THO/TREX complex plays a critical role in transcriptional elongation, pre-mRNA processing, and nuclear mRNA export. This complex is evolutionally well- conserved, but there are some differences in composition and function according to organisms. Here we showed that spTex1, a component of THO/TREX complex, is not essential for growth and mRNA export in a fission yeast, Schizosaccharomyces pombe, which is more similar to higher eukaryote than budding yeast. Deletion and overexpression of the spTex1 gene do not lead to any detectable growth phenotype and accumulation of poly(A)+ RNA in the nucleus. And the spTex1-GFP protein is localized mainly in the nucleus. Yeast two-hybrid and Co-immunoprecipitation analysis showed that the spTex1 protein interacted with spHpr1 (THOC1) and spTho2 (THOC2), main subunits of THO complex. We conclude that the S. pombe Tex1 is a component of THO/TREX complex, but does not plays important roles in growth and bulk mRNA export from the nucleus.