DOI QR코드

DOI QR Code

The Expanding Significance of Inositol Polyphosphate Multikinase as a Signaling Hub

  • Kim, Eunha (Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Ahn, Hyoungjoon (Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Kim, Min Gyu (Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Lee, Haein (Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Kim, Seyun (Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST))
  • Received : 2017.04.26
  • Accepted : 2017.05.17
  • Published : 2017.05.31

Abstract

The inositol polyphosphates are a group of multifunctional signaling metabolites whose synthesis is catalyzed by a family of inositol kinases that are evolutionarily conserved from yeast to humans. Inositol polyphosphate multikinase (IPMK) was first identified as a subunit of the arginine-responsive transcription complex in budding yeast. In addition to its role in the production of inositol tetrakis- and pentakisphosphates ($IP_4$ and $IP_5$), IPMK also exhibits phosphatidylinositol 3-kinase (PI3-kinase) activity. Through its PI3-kinase activity, IPMK activates Akt/PKB and its downstream signaling pathways. IPMK also regulates several protein targets non-catalytically via protein-protein interactions. These non-catalytic targets include cytosolic signaling factors and transcription factors in the nucleus. In this review, we highlight the many known functions of mammalian IPMK in controlling cellular signaling networks and discuss future challenges related to clarifying the unknown roles IPMK plays in physiology and disease.

Keywords

References

  1. Ahmed, I., Sbodio, J.I., Harraz, M.M., Tyagi, R., Grima, J.C., Albacarys, L.K., Hubbi, M.E., Xu, R., Kim, S., Paul, B.D., et al. (2015). Huntington's disease: Neural dysfunction linked to inositol polyphosphate multikinase. Proc. Natl. Acad. Sci. USA 112, 9751-9756. https://doi.org/10.1073/pnas.1511810112
  2. Akira, S., Takeda, K., and Kaisho, T. (2001). Toll-like receptors : critical proteins linking innate and acquired immunity. Nat. Immunol. 2, 675-80. https://doi.org/10.1038/90609
  3. Alessi, D.R., Sakamoto, K., and Bayascas, J.R. (2006). LKB1-dependent signaling pathways. Annu. Rev. Biochem. 75, 137-163. https://doi.org/10.1146/annurev.biochem.75.103004.142702
  4. Bang, S., Kim, S., Dailey, M.J., Chen, Y., Moran, T.H., Snyder, S.H., and Kim, S.F. (2012). AMP-activated protein kinase is physiologically regulated by inositol polyphosphate multikinase. Proc. Natl. Acad. Sci. USA 109, 616-620. https://doi.org/10.1073/pnas.1119751109
  5. Bang, S., Chen, Y., Ahima, R.S., and Kim, S.F. (2014). Convergence of IPMK and LKB1-AMPK signaling pathways on metformin action. Mol. Endocrinol. 28, 1186-1193. https://doi.org/10.1210/me.2014-1134
  6. Bartsch, D., Casadio, A., Karl, K.A., Serodio, P., and Kandel, E.R. (1998). CREB1 encodes a nuclear activator, a repressor, and a cytoplasmic modulator that form a regulatory unit critical for longterm facilitation. Cell 95, 211-223. https://doi.org/10.1016/S0092-8674(00)81752-3
  7. Bechet, J., Greenson, M., and Wiame, J.M. (1970). Mutations affecting the repressibility of arginine biosynthetic enzymes in Saccharomyces cerevisiae. Eur. J. Biochem. 12, 31-39. https://doi.org/10.1111/j.1432-1033.1970.tb00817.x
  8. Bercy, J., Dubois, E., and Messenguy, F. (1987). Regulation of arginine metabolism in Saccharomyces cerevisiae: expression of the three ARGR regulatory genes and cellular localization of their products. Gene 55, 277285.
  9. Berridge, M.J., Lipp, P., and Bootman, M.D. (2000). The versatility and universality of calcium signalling. Nat. Rev. Mol. Cell Biol. 1, 1121.
  10. Blind, R.D. (2013). Disentangling biological signaling networks by dynamic coupling of signaling lipids to modifying enzymes. Adv. Biol. Regul. 54, 114.
  11. Blind, R.D., Suzawa, M., and Ingraham, H.A. (2012). Direct modification and regulation of a nuclear receptor-PIP2 complex by the nuclear inositol-lipid kinase IPMK. Sci. Signal. 5, 110.
  12. Bourtchuladze, R., Frenguelli, B., Blendy, J., Cioffi, D., Schutz, G., and Silva, A.J. (1994). Deficient long-term memory in mice with a targeted mutation of the cAMP-responsive element-binding protein. Cell 79, 5968.
  13. Brady, C.A., and Attardi, L.D. (2010). p53 at a glance. J. Cell Sci. 123, 25272532.
  14. Carmody, S.R., and Wente, S.R. (2009). mRNA nuclear export at a glance. J. Cell Sci. 122, 1933-1937. https://doi.org/10.1242/jcs.041236
  15. Chakraborty, A., Kim, S., and Snyder, S.H. (2011). Inositol pyrophosphates as mammalian cell signals. Sci. Signal. 4, 1-11.
  16. Chen, Z., Trotman, L.C., Shaffer, D., Lin, H.-K., Dotan, Z.A., Niki, M., Koutcher, J.A., Scher, H.I., Ludwig, T., Gerald, W., et al. (2005). Crucial role of p53-dependent cellular senescence in suppression of Pten-deficient tumorigenesis. Nature 436, 725-730. https://doi.org/10.1038/nature03918
  17. Christ, C., and Tye, B.K. (1991). Functional domains of the yeast transcription/replication factor MCM1. Genes Dev. 5, 751-763. https://doi.org/10.1101/gad.5.5.751
  18. Cole, R.L., Konradi, C., Douglass, J., and Hyman, S.E. (1995). Neuronal adaptation to amphetamine and dopamine: molecular mechanisms of prodynorphin gene regulation in rat striatum. Neuron 14, 813-823. https://doi.org/10.1016/0896-6273(95)90225-2
  19. Colin, E., Regulier, E., Perrin, V., Durr, A., Brice, A., Aebischer, P., Deglon, N., Humbert, S., and Saudou, F. (2005). Akt is altered in an animal model of Huntington's disease and in patients. Eur. J. Neurosci. 21, 1478-1488. https://doi.org/10.1111/j.1460-9568.2005.03985.x
  20. Collado, M., Gil, J., Efeyan, A., Guerra, C., Schuhmacher, A.J., Barradas, M., Benguria, A., Zaballos, A., Flores, J.M., Barbacid, M., et al. (2005). Tumour biology: senescence in premalignant tumours. Nature 436, 642. https://doi.org/10.1038/436642a
  21. Curran, T., and Morgan, J.I. (1985). Superinduction of c-fos by nerve growth factor in the presence of peripherally active benzodiazepines. Science 229, 1265-1268. https://doi.org/10.1126/science.4035354
  22. Deng, L., Wang, C., Spencer, E., Yang, L., Braun, A., You, J., Slaughter, C., Pickart, C., and Chen, Z.J. (2000). Activation of the IkappaB kinase complex by TRAF6 requires a dimeric ubiquitinconjugating enzyme complex and a unique polyubiquitin chain. Cell 103, 351-361. https://doi.org/10.1016/S0092-8674(00)00126-4
  23. Drost, J., Mantovani, F., Tocco, F., Elkon, R., Comel, A., Holstege, H., Kerkhoven, R., Jonkers, J., Voorhoeve, P.M., Agami, R., et al. (2010). BRD7 is a candidate tumour suppressor gene required for p53 function. Nat. Cell Biol. 12, 380-389. https://doi.org/10.1038/ncb2038
  24. Dubois, E., Bercy, J., and Messenguy, F. (1987). Characterization of two genes, ARGRI and ARGRIII required for specific regulation of arginine metabolism in yeast. Mol. Gen. Genet. 207, 142-148. https://doi.org/10.1007/BF00331501
  25. Frederick, J.P., Mattiske, D., Wofford, J.A., Megosh, L.C., Drake, L.Y., Chiou, S.-T., Hogan, B.L.M., and York, J.D. (2005). An essential role for an inositol polyphosphate multikinase, Ipk2, in mouse embryogenesis and second messenger production. Proc. Natl. Acad. Sci. USA 102, 8454-8459. https://doi.org/10.1073/pnas.0503706102
  26. Gao, Y., and Wang, H. (2007). Inositol pentakisphosphate mediates Wnt/beta-catenin signaling. J. Biol. Chem. 282, 26490-26502. https://doi.org/10.1074/jbc.M702106200
  27. Hatch, A.J., Odom, A.R., and York, J.D. (2017). Inositol phosphate multikinase dependent transcriptional control. Adv. Biol. Regul. 64, 9-19. https://doi.org/10.1016/j.jbior.2017.03.001
  28. Hawley, S.A., Davison, M., Woods, A., Davies, S.P., Beri, R.K., Carling, D., and Hardie, D.G. (1996). Characterization of the AMP-activated protein kinase kinase from rat liver and identification of threonine 172 as the major site at which it phosphorylates AMP-activated protein kinase. J. Biol. Chem. 271, 27879-27887. https://doi.org/10.1074/jbc.271.44.27879
  29. Hill, C.S., and Treisman, R. (1995). Transcriptional regulation by extracellular signals: mechanisms and specificity. Cell 80, 199-211. https://doi.org/10.1016/0092-8674(95)90403-4
  30. Hjerpe, R., and Rodriguez, M. (2008). Alternative UPS drug targets upstream the 26S proteasome. Int. J. Biochem. Cell Biol. 40, 1126-1140. https://doi.org/10.1016/j.biocel.2007.11.021
  31. Holub, B.J. (1986). Metabolism and function of myo-inositol and inositol phospholipids. Annu. Rev. Nutr. 6, 563-597. https://doi.org/10.1146/annurev.nu.06.070186.003023
  32. Hope, B., Kosofsky, B., Hyman, S.E., and Nestler, E.J. (1992). Regulation of immediate early gene expression and AP-1 binding in the rat nucleus accumbens by chronic cocaine. Proc. Natl. Acad. Sci. USA 89, 5764-5768. https://doi.org/10.1073/pnas.89.13.5764
  33. Hunt, S.P., Pini, A., and Evan, G. (1987). Induction of c-fos-like protein in spinal cord neurons following sensory stimulation. Nature 328, 632-634. https://doi.org/10.1038/328632a0
  34. Jackson, S.G., Al-Saigh, S., Schultz, C., and Junop, M.S. (2011). Inositol pentakisphosphate isomers bind PH domains with varying specificity and inhibit phosphoinositide interactions. BMC Struct. Biol. 11, 11. https://doi.org/10.1186/1472-6807-11-11
  35. Kandel, E.R. (2001). The molecular biology of memory storage: a dialogue between genes and synapses. Science 294, 1030-1038. https://doi.org/10.1126/science.1067020
  36. Kim, S., and Snyder, S.H. (2011). Nutrient amino acids signal to mTOR via inositol polyphosphate multikinase. Cell Cycle 10, 1708-1710. https://doi.org/10.4161/cc.10.11.15559
  37. Kim, S., Kim, S.F., Maag, D., Maxwell, M.J., Resnick, A.C., Juluri, K.R., Chakraborty, A., Koldobskiy, M.A., Cha, S.H., Barrow, R., et al. (2011). Amino acid signaling to mTOR mediated by inositol polyphosphate multikinase. Cell Metab. 13, 215-221. https://doi.org/10.1016/j.cmet.2011.01.007
  38. Kim, E., Tyagi, R., Lee, J.-Y., Park, J., Kim, Y.-R., Beon, J., Chen, P.Y., Cha, J.Y., Snyder, S.H., and Kim, S. (2013). Inositol polyphosphate multikinase is a coactivator for serum response factor-dependent induction of immediate early genes. Proc. Natl. Acad. Sci. USA 110, 19938-19943. https://doi.org/10.1073/pnas.1320171110
  39. Kim, E., Beon, J., Lee, S., Park, J., and Kim, S. (2016). IPMK: A versatile regulator of nuclear signaling events. Adv. Biol. Regul. 61, 25-32. https://doi.org/10.1016/j.jbior.2015.11.005
  40. Kim, E., Beon, J., Lee, S., Park, S.J., Ahn, H., Kim, M.G., Park, J.E., Kim, W., Yuk, J.-M., Kang, S.-J., et al. (2017). Inositol polyphosphate multikinase promotes Toll-like receptor-induced inflammation by stabilizing TRAF6. Sci. Adv. 3, e1602296. https://doi.org/10.1126/sciadv.1602296
  41. Kondo, T., Kawai, T., and Akira, S. (2012). Dissecting negative regulation of Toll-like receptor signaling. Trends Immunol. 33, 449-458. https://doi.org/10.1016/j.it.2012.05.002
  42. Lamothe, B., Besse, A., Campos, A.D., Webster, W.K., Wu, H., and Darnay, B.G. (2007). Site-specific Lys-63-linked tumor necrosis factor receptor-associated factor 6 auto-ubiquitination is a critical determinant of I${\kappa}$B kinase activation. J. Biol. Chem. 282, 4102-4112.
  43. Lee, M.S., and Kim, Y.-J. (2007). Pattern-recognition receptor signaling initiated from extracellular, membrane, and cytoplasmic space. Mol. Cells 23, 1-10.
  44. Lee, J.-Y., Kim, Y., Park, J., and Kim, S. (2012). Inositol polyphosphate multikinase signaling in the regulation of metabolism. Ann. N. Y. Acad. Sci. 1271, 68-74. https://doi.org/10.1111/j.1749-6632.2012.06725.x
  45. Lee, T.-S., Lee, J.-Y., Kyung, J.W., Yang, Y., Park, S.J., Lee, S., Pavlovic, I., Kong, B., Jho, Y.S., Jessen, H.J., et al. (2016). Inositol pyrophosphates inhibit synaptotagmin-dependent exocytosis. Proc. Natl. Acad. Sci. USA 113, 8314-8319. https://doi.org/10.1073/pnas.1521600113
  46. Liew, F.Y., Xu, D., Brint, E.K., and O'Neill, L.A.J. (2005). Negative regulation of Toll-like receptor-mediated immune responses. Nat. Rev. Immunol. 5, 446-458. https://doi.org/10.1038/nri1630
  47. Liu, P., Qi, X., Bian, C.E., Yang, F.A.N., and Lin, X. (2017). MicroRNA-18a inhibits ovarian cancer growth via directly targeting TRIAP1 and IPMK. Oncol. Lett. 1-8.
  48. Maag, D., Maxwell, M.J., Hardesty, D.A., Boucher, K.L., Choudhari, N., Hanno, A.G., Ma, J.F., Snowman, A.S., Pietropaoli, J.W., Xu, R., et al. (2011). Inositol polyphosphate multikinase is a physiologic PI3-kinase that activates Akt/PKB. Proc. Natl. Acad. Sci. USA 108, 1391-1396. https://doi.org/10.1073/pnas.1017831108
  49. Malabanan, M.M., and Blind, R.D. (2016). Inositol polyphosphate multikinase (IPMK) in transcriptional regulation and nuclear inositide metabolism. Biochem. Soc. Trans. 44, 279-285. https://doi.org/10.1042/BST20150225
  50. Matynia, A., Kushner, S.A., and Silva, A.J. (2002). Genetic approaches to molecular and cellular cognition: a focus on LTP and learning and memory. Annu. Rev. Genet. 36, 687-720. https://doi.org/10.1146/annurev.genet.36.062802.091007
  51. Messenguy, F., and Dubois, E. (1993). Genetic evidence for a role for MCM1 in the regulation of arginine metabolism in Saccharomyces cerevisiae. Mol. Cell. Biol. 13, 2586-2592. https://doi.org/10.1128/MCB.13.4.2586
  52. Millard, C.J., Watson, P.J., Celardo, I., Gordiyenko, Y., Cowley, S.M., Robinson, C.V, Fairall, L., and Schwabe, J.W.R. (2013). Class I HDACs share a common mechanism of regulation by inositol phosphates. Mol. Cell 51, 57-67. https://doi.org/10.1016/j.molcel.2013.05.020
  53. Odom, A.R., Stahlberg, A., Wente, S.R., and York, J.D. (2000). A role for nuclear inositol 1,4,5-trisphosphate kinase in transcriptional control. Science 287, 2026-2029. https://doi.org/10.1126/science.287.5460.2026
  54. Parker, K.L., and Schimmer, B.P. (1997). Steroidogenic factor 1: a key determinant of endocrine development and function. Endocr. Rev. 18, 361-377. https://doi.org/10.1210/edrv.18.3.0301
  55. Piccolo, E., Vignati, S., Maffucci, T., Innominato, P.F., Riley, A.M., Potter, B.V.L., Pandolfi, P.P., Broggini, M., Iacobelli, S., Innocenti, P., et al. (2004). Inositol pentakisphosphate promotes apoptosis through the PI 3-K/Akt pathway. Oncogene 23, 1754-1765. https://doi.org/10.1038/sj.onc.1207296
  56. Pickart, C.M. (1997). Targeting of substrates to the 26S proteasome. FASEB J. 11, 1055-1066. https://doi.org/10.1096/fasebj.11.13.9367341
  57. Ramazzotti, G., Maria Billi, A., Manzoli, L., Mazzetti, C., Ruggeri, A., Erneux, C., Kim, S., Suh, P.-G., Cocco, L., and Faenza, I. (2016). IPMK and ${\beta}$-catenin mediate PLC-${\beta}$1-dependent signaling in myogenic differentiation. Oncotarget 7, 84118-84127.
  58. Ramazzotti, G., Faenza, I., Fiume, R., Billi, A.M., Manzoli, L., Mongiorgi, S., Ratti, S., McCubrey, J.A., Suh, P.-G., Cocco, L., et al. (2017). PLC-beta1 and cell differentiation: An insight into myogenesis and osteogenesis. Adv. Biol. Regul. 63, 1-5. https://doi.org/10.1016/j.jbior.2016.10.005
  59. Razzini, G., Berrie, C.P., Vignati, S., Broggini, M., Mascetta, G., Brancaccio, A., and Falasca, M. (2000). Novel functional PI 3-kinase antagonists inhibit cell growth and tumorigenicity in human cancer cell lines. FASEB J. 14, 1179-1187. https://doi.org/10.1096/fasebj.14.9.1179
  60. Resnick, A.C., Snowman, A.M., Kang, B.N., Hurt, K.J., Snyder, S.H., and Saiardi, A. (2005). Inositol polyphosphate multikinase is a nuclear PI3-kinase with transcriptional regulatory activity. Proc. Natl. Acad. Sci. USA 102, 12783-12788. https://doi.org/10.1073/pnas.0506184102
  61. Saiardi, A., Erdjument-Bromage, H., Snowman, A.M., Tempst, P., and Snyder, S.H. (1999). Synthesis of diphosphoinositol pentakisphosphate by a newly identified family of higher inositol polyphosphate kinases. Curr. Biol. 9, 1323-1326. https://doi.org/10.1016/S0960-9822(00)80055-X
  62. Sancak, Y., Bar-Peled, L., Zoncu, R., Markhard, A.L., Nada, S., and Sabatini, D.M. (2010). Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell 141, 290-303. https://doi.org/10.1016/j.cell.2010.02.024
  63. De Santa Barbara, P., Bonneaud, N., Boizet, B., Desclozeaux, M., Moniot, B., Sudbeck, P., Scherer, G., Poulat, F., and Berta, P. (1998). Direct interaction of SRY-related protein SOX9 and steroidogenic factor 1 regulates transcription of the human anti-Müllerian hormone gene. Mol. Cell. Biol. 18, 6653-6665. https://doi.org/10.1128/MCB.18.11.6653
  64. Scott, J.W., Hawley, S.A., Green, K.A., Anis, M., Stewart, G., Scullion, G.A., Norman, D.G., and Hardie, D.G. (2004). CBS domains form energy-sensing modules whose binding of adenosine ligands is disrupted by disease mutations. J. Clin. Invest. 113, 274-284. https://doi.org/10.1172/JCI19874
  65. Sei, Y., Zhao, X., Forbes, J., Szymczak, S., Li, Q., Trivedi, A., Voellinger, M., Joy, G., Feng, J., Whatley, M., et al. (2015). A hereditary form of small intestinal carcinoid associated with a germline mutation in inositol polyphosphate multikinase. Gastroenterology 149, 67-78. https://doi.org/10.1053/j.gastro.2015.04.008
  66. Shen, X., Xiao, H., Ranallo, R., Wu, W.-H., and Wu, C. (2003). Modulation of ATP-dependent chromatin-remodeling complexes by inositol polyphosphates. Science 299, 112-114. https://doi.org/10.1126/science.1078068
  67. Silva, A.J., Kogan, J.H., Frankland, P.W., and Kida, S. (1998). CREB and memory. Annu. Rev. Neurosci. 21, 127-148. https://doi.org/10.1146/annurev.neuro.21.1.127
  68. Steger, D.J., Haswell, E.S., Miller, A.L., Wente, S.R., and O'Shea, E.K. (2003). Regulation of chromatin remodeling by inositol polyphosphates. Science 299, 114-116. https://doi.org/10.1126/science.1078062
  69. Streb, H., Irvine, R.F., Berridge, M.J., and Schulz, I. (1983). Release of $Ca^{2+}$ from a nonmitochondrial intracellular store in pancreatic acinar cells by inositol-1,4,5-trisphosphate. Nature 306, 67-69. https://doi.org/10.1038/306067a0
  70. Vousden, K.H., and Prives, C. (2009). Blinded by the light: the growing complexity of p53. Cell 137, 413-431. https://doi.org/10.1016/j.cell.2009.04.037
  71. Wang, Y., and Wang, H.Y. (2012). Dvl3 translocates IPMK to the cell membrane in response to Wnt. Cell. Signal. 24, 2389-2395. https://doi.org/10.1016/j.cellsig.2012.08.009
  72. Watson, P., Fairall, L., Santos, G., and Schwabe, J. (2012). Structure of HDAC3 bound to co-repressor and inositol tetraphosphate. Nature 481, 335-340. https://doi.org/10.1038/nature10728
  73. Watson, P.J., Millard, C.J., Riley, A.M., Robertson, N.S., Wright, L.C., Godage, H.Y., Cowley, S.M., Jamieson, A.G., Potter, B.V.L., and Schwabe, J.W.R. (2016). Insights into the activation mechanism of class I HDAC complexes by inositol phosphates. Nat. Commun. 7, 11262. https://doi.org/10.1038/ncomms11262
  74. Wickramasinghe, V., Savill, J., Chavali, S., Jonsdottir, A., Rajendra, E., Grüner, T., Laskey, R., Babu, M.M., and Venkitaraman, A. (2013). Human inositol polyphosphate multikinase regulates transcriptselective nuclear mRNA export to preserve genome integrity. Mol. Cell 51, 737-750. https://doi.org/10.1016/j.molcel.2013.08.031
  75. Xiao, B., Sanders, M.J., Underwood, E., Heath, R., Mayer, F. V, Carmena, D., Jing, C., Walker, P.A., Eccleston, J.F., Haire, L.F., et al. (2011). Structure of mammalian AMPK and its regulation by ADP. Nature 472, 230-233. https://doi.org/10.1038/nature09932
  76. Xu, R., and Snyder, S.H. (2013). Gene transcription by p53 requires inositol polyphosphate multikinase as a co-activator. Cell Cycle 12, 1819-1820. https://doi.org/10.4161/cc.25119
  77. Xu, R., Paul, B.D., Smith, D.R., Tyagi, R., Rao, F., Khan, A.B., Blech, D.J., Vandiver, M.S., Harraz, M.M., Guha, P., et al. (2013a). Inositol polyphosphate multikinase is a transcriptional coactivator required for immediate early gene induction. Proc. Natl. Acad. Sci. USA 110, 16181-16186. https://doi.org/10.1073/pnas.1315551110
  78. Xu, R., Sen, N., Paul, B.D., Snowman, A.M., Rao, F., Vandiver, M.S., Xu, J., and Snyder, S.H. (2013b). Inositol polyphosphate multikinase is a coactivator of p53-mediated transcription and cell death. Sci. Signal. 6, 1-17.
  79. Yin, J.C., Wallach, J.S., Del Vecchio, M., Wilder, E.L., Zhou, H., Quinn, W.G., and Tully, T. (1994). Induction of a dominant negative CREB transgene specifically blocks long-term memory in Drosophila. Cell 79, 49-58. https://doi.org/10.1016/0092-8674(94)90399-9
  80. Yokoyama, J.S., Wang, Y., Schork, A.J., Thompson, W.K., Karch, C.M., Cruchaga, C., McEvoy, L.K., Witoelar, A., Chen, C.-H., Holland, D., et al. (2016). Association between genetic traits for immunemediated diseases and alzheimer disease. JAMA Neurol. 73, 691-697. https://doi.org/10.1001/jamaneurol.2016.0150
  81. Zoncu, R., Efeyan, A., and Sabatini, D.M. (2011). mTOR: from growth signal integration to cancer, diabetes and ageing. Nat. Rev. Mol. Cell Biol. 12, 21-35. https://doi.org/10.1038/nrm3025

Cited by

  1. Genome-wide interaction studies identify sex-specific risk alleles for nonsyndromic orofacial clefts vol.42, pp.7, 2018, https://doi.org/10.1002/gepi.22158
  2. Inositol polyphosphate multikinase mediates extinction of fear memory vol.116, pp.7, 2017, https://doi.org/10.1073/pnas.1812771116
  3. Inhibition of Inositol Polyphosphate Kinases by Quercetin and Related Flavonoids: A Structure-Activity Analysis vol.62, pp.3, 2019, https://doi.org/10.1021/acs.jmedchem.8b01593
  4. Structural analyses of inositol phosphate second messengers bound to signaling effector proteins vol.75, pp.None, 2017, https://doi.org/10.1016/j.jbior.2019.100667
  5. Von Hippel–Lindau tumor suppressor (VHL) stimulates TOR signaling by interacting with phosphoinositide 3-kinase (PI3K) vol.295, pp.8, 2017, https://doi.org/10.1074/jbc.ra119.011596
  6. Primate lentiviruses require Inositol hexakisphosphate (IP6) or inositol pentakisphosphate (IP5) for the production of viral particles vol.16, pp.8, 2017, https://doi.org/10.1371/journal.ppat.1008646
  7. Inositol Polyphosphate Multikinase Inhibits Liquid-Liquid Phase Separation of TFEB to Negatively Regulate Autophagy Activity vol.55, pp.5, 2017, https://doi.org/10.1016/j.devcel.2020.10.010
  8. Inositol phosphates promote HIV-1 assembly and maturation to facilitate viral spread in human CD4+ T cells vol.17, pp.1, 2017, https://doi.org/10.1371/journal.ppat.1009190
  9. Phytocannabinoid‐dependent mTORC1 regulation is dependent upon inositol polyphosphate multikinase activity vol.178, pp.5, 2017, https://doi.org/10.1111/bph.15351
  10. Inositol Phosphates and Retroviral Assembly: A Cellular Perspective vol.13, pp.12, 2017, https://doi.org/10.3390/v13122516