• Title/Summary/Keyword: Buckling Mode

Search Result 359, Processing Time 0.027 seconds

Two Dimensional Size Effect on the Compressive Strength of Composite Plates Considering Influence of an Anti-buckling Device (좌굴방지장치 영향을 고려한 복합재 적층판의 압축강도에 대한 이차원 크기 효과)

  • ;;C. Soutis
    • Composites Research
    • /
    • v.15 no.4
    • /
    • pp.23-31
    • /
    • 2002
  • The two dimensional size effect of specimen gauge section ($length{\;}{\times}{\;}width$) was investigated on the compressive behavior of a T300/924 $\textrm{[}45/-45/0/90\textrm{]}_{3s}$, carbon fiber-epoxy laminate. A modified ICSTM compression test fixture was used together with an anti-buckling device to test 3mm thick specimens with a $30mm{\;}{\times}{\;}30mm,{\;}50mm{\;}{\times}{\;}50mm,{\;}70mm{\;}{\times}{\;}70mm{\;}and{\;}90mm{\;}{\times}{\;}90mm$ gauge length by width section. In all cases failure was sudden and occurred mainly within the gauge length. Post failure examination suggests that $0^{\circ}$ fiber microbuckling is the critical damage mechanism that causes final failure. This is the matrix dominated failure mode and its triggering depends very much on initial fiber waviness. It is suggested that manufacturing process and quality may play a significant role in determining the compressive strength. When the anti-buckling device was used on specimens, it was showed that the compressive strength with the device was slightly greater than that without the device due to surface friction between the specimen and the device by pretoque in bolts of the device. In the analysis result on influence of the anti-buckling device using the finite element method, it was found that the compressive strength with the anti-buckling device by loaded bolts was about 7% higher than actual compressive strength. Additionally, compressive tests on specimen with an open hole were performed. The local stress concentration arising from the hole dominates the strength of the laminate rather than the stresses in the bulk of the material. It is observed that the remote failure stress decreases with increasing hole size and specimen width but is generally well above the value one might predict from the elastic stress concentration factor. This suggests that the material is not ideally brittle and some stress relief occurs around the hole. X-ray radiography reveals that damage in the form of fiber microbuckling and delamination initiates at the edge of the hole at approximately 80% of the failure load and extends stably under increasing load before becoming unstable at a critical length of 2-3mm (depends on specimen geometry). This damage growth and failure are analysed by a linear cohesive zone model. Using the independently measured laminate parameters of unnotched compressive strength and in-plane fracture toughness the model predicts successfully the notched strength as a function of hole size and width.

Experimental Study on Failure Behavior of Steel Members and Elements under Very Low Load-Cycles (극저하중(極低荷重)사이클을 받는 강부재(鋼部材) 및 요소(要素)의 파괴거동(破壞擧動)에 관한 실험적(實驗的) 연구(硏究))

  • Park, Yeon Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.2
    • /
    • pp.257-268
    • /
    • 1994
  • An experimental study was carried out to elicit important factors causing cracks and rupture of steel members and their elements under imposed large repeated deformations, and of the quantitative relationships among the important physical factors leading to failure. Each of twenty-eight angles and nine thin-plates served as the specimen and was subjected to repeated axial load after undergoing inelastic buckling. Particular attention was paid to the effects of loading pattern, failure mode and cross-sectional shape on the very-low-cycle failure behavior under loading repetitions of the order of a few to twenty. The experimental results show that energy dissipation capacity depends heavily on the entire history of loading, the failure mode, the slenderness ratio and the width-to-thickness ratio. No simple quantitative relations were observed between the initiation of the visible cracks or rupture and the energy dissipation capacity. The maximum values of residual "net" strains are found to range from 25% to 40%, independent of the test parameters.

  • PDF

Hysteretic behaviour of circular tubular T-joints with local chord reinforcement

  • Shao, Y.B.;Wang, Y.M.;Yang, D.P.
    • Steel and Composite Structures
    • /
    • v.21 no.5
    • /
    • pp.1017-1029
    • /
    • 2016
  • When a welded circular hollow section (CHS) tubular joint is subjected to brace axial loading, failure position is located usually at the weld toe on the chord surface due to the weak flexural stiffness of the thin-walled chord. The failure mode is local yielding or buckling in most cases for a tubular joint subjected to axial load at the brace end. Especially when a cyclic axial load is applied, fracture failure at the weld toe may occur because both high stress concentration and welding residual stress along the brace/chord intersection cause the material in this region to become brittle. To improve the ductility as well as to increase the static strength, a tubular joint can be reinforced by increasing the chord thickness locally near the brace/chord intersection. Both experimental investigation and finite element analysis have been carried out to study the hysteretic behaviour of the reinforced tubular joint. In the experimental study, the hysteretic performance of two full-scale circular tubular T-joints subjected to cyclic load in the axial direction of the brace was investigated. The two specimens include a reinforced specimen by increasing the wall thickness of the chord locally at the brace/chord intersection and a corresponding un-reinforced specimen. The hysteretic loops are obtained from the measured load-displacement curves. Based on the hysteretic curves, it is found that the reinforced specimen is more ductile than the un-reinforced one because no fracture failure is observed after experiencing similar loading cycles. The area enclosed by the hysteretic curves of the reinforced specimen is much bigger, which shows that more energy can be dissipated by the reinforced specimen to indicate the advantage of the reinforcing method in resisting seismic action. Additionally, finite element analysis is carried out to study the effect of the thickness and the length of the reinforced chord segment on the hysteretic behaviour of CHS tubular T-joints. The optimized reinforcing method is recommended for design purposes.

Slenderness Ratio Distributions and Average Compressive Strengths of Stiffened Plates Used for In-Service Vessels (실선 보강판의 세장비 분포 및 평균 압축 강도 비교 연구)

  • Nam, Ji-Myung;Choung, Joon-Mo;Jeon, Sang-Ik;Lee, Min-Seong;Ha, Tae-Bum
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.5
    • /
    • pp.709-718
    • /
    • 2010
  • This paper deals with two contents: first, distributions of plate slenderness ratios, stiffened plate slenderness ratios, and stiffener slenderness ratios, which include dimensions and material variables of stiffened plates, of stiffened plates of large-sized in-service vessels, and, second, comparison of compressive strengths. The investigated vessels consist of 59 tankers, 49 bulkers, 28 product carriers, 15 container carriers, and 12 multi-purpose vessels. The tankers are ranged from handymax class to VLCC and larger than Suezmax class. The sizes of the bulkers are 20K to 200K deadweight. The maximum size of containers is less than 5000TEU class. Two parameters for normal distributions of the slenderness ratios (mean and standard deviation) are suggested and probable ranges of the slenderness ratios are also graphically presented. The ultimate strengths of the stiffened plates are presented using the various simplified formulas and nonlinear FEAs. As well, average compressive strength curves, which are necessary for the estimation of the hull girder moment capacities, are proposed. It is proved that formulas for stiffened plates in CSR overestimate slightly in overall average strain range. Mode5 formula (plate buckling mode) in CSR show unreasonably conservative results with respect to the ultimate strengths rather than post-ultimate average compressive strengths.

Compressive behavior of profiled double skin composite wall

  • Qin, Ying;Li, Yong-Wei;Su, Yu-Sen;Lan, Xu-Zhao;Wu, Yuan-De;Wang, Xiang-Yu
    • Steel and Composite Structures
    • /
    • v.30 no.5
    • /
    • pp.405-416
    • /
    • 2019
  • Profiled composite slab has been widely used in civil engineering due to its structural merits. The extension of this concept to the bearing wall forms the profiled composite wall, which consists of two external profiled steel plates and infill concrete. This paper investigates the structural behavior of this type of wall under axial compression. A series of compression tests on profiled composite walls consisting of varied types of profiled steel plate and edge confinement have been carried out. The test results are evaluated in terms of failure modes, load-axial displacement curves, strength index, ductility ratio, and load-strain response. It is found that the type of profiled steel plate has influence on the axial capacity and strength index, while edge confinement affects the failure mode and ductility. The test data are compared with the predictions by modern codes such as AISC 360, BS EN 1994-1-1, and CECS 159. It shows that BS EN 1994-1-1 and CECS 159 significantly overestimate the actual compressive capacity of profiled composite walls, while AISC 360 offers reasonable predictions. A method is then proposed, which takes into account the local buckling of profiled steel plates and the reduction in the concrete resistance due to profiling. The predictions show good correlation with the test results.

Seismic performance of CFS shear wall systems filled with polystyrene lightweight concrete: Experimental investigation and design methodology

  • Mohammad Rezaeian Pakizeh;Hossein Parastesh;Iman Hajirasouliha;Farhang Farahbod
    • Steel and Composite Structures
    • /
    • v.46 no.4
    • /
    • pp.497-512
    • /
    • 2023
  • Using light weight concrete as infill material in conventional cold-formed steel (CFS) shear wall systems can considerably increase their load bearing capacity, ductility, integrity and fire resistance. The compressive strength of the filler concrete is a key factor affecting the structural behaviour of the composite wall systems, and therefore, achieving maximum compressive strength in lightweight concrete while maintaining its lightweight properties is of significant importance. In this study a new type of optimum polystyrene lightweight concrete (OPLC) with high compressive strength is developed for infill material in composite CFS shear wall systems. To study the seismic behaviour of the OPLC-filled CFS shear wall systems, two full scale wall specimens are tested under cyclic loading condition. The effects of OPLC on load-bearing capacity, failure mode, ductility, energy dissipation capacity, and stiffness degradation of the walls are investigated. It is shown that the use of OPLC as infill in CFS shear walls can considerably improve their seismic performance by: (i) preventing the premature buckling of the stud members, and (ii) changing the dominant failure mode from brittle to ductile thanks to the bond-slip behaviour between OPLC and CFS studs. It is also shown that the design equations proposed by EC8 and ACI 318-14 standards overestimate the shear force capacity of OPLC-filled CFS shear wall systems by up to 80%. This shows it is necessary to propose methods with higher efficiency to predict the capacity of these systems for practical applications.

Metallized Electrospun Nanofiber webs with Bulckled Configuration for Highly Transparent and Stretchable Conductors

  • Jin, Yusung;Hwang, Sunju;Jeong, Soo-Hwan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.363.1-363.1
    • /
    • 2016
  • Transparent and stretchable conductors are expected to be an essential component in future stretchable optoelectronic devices. Until now, two main methods have been commonly employed to fabricate transparent and stretchable conductors by using metal nanomaterials: creating buckling configurations and creating network configurations. In this report, a novel strategy for obtaining transparent and stretchable conductors is presented, one that employs these two main approaches simultaneously. To the best of our knowledge, this proposed configuration of a buckled long nanofiber network in this study has not yet been reported. In order to provide the transparent conductors with dual mode stretchability originating from simultaneous buckled and network configurations, a buckled Au@polyvinylpyrrolidone (PVP) nanofiber network (hereafter referred to BANN for convenience) was fabricated by transferring Au-metallized electrospun PVP nanofibers onto a prestrained polydimethylsiloxane (PDMS) substrate. Our BANN shows considerably lower strain sensitivity of resistance than that of straight Au@PVP nanofiber network. Durability tests conducted by performing cyclic tensile strain reveal that the relative change in resistance of BANN (prestrain = 20%) is quite small after 1000 cycles. We also demonstrate that this BANN exhibits superior performance over widely used indium tin oxide conductors with regard to high optical transmittance and low sheet resistance.

  • PDF

Eccentrically compressive behaviour of RC square short columns reinforced with a new composite method

  • Zhang, Fan;Lu, Yiyan;Li, Shan;Zhang, Wenlong
    • Steel and Composite Structures
    • /
    • v.27 no.1
    • /
    • pp.95-108
    • /
    • 2018
  • A new composite reinforced method, namely self-compacting concrete filled circular CFRP-steel jacketing, was proposed in this paper. Experimental tests on eight RC square short columns reinforced with the new composite reinforced method and four RC square short columns reinforced with CFS jackets were conducted to investigate their eccentrically compressive behaviour. Nine reinforced columns were subjected to eccentrically compressive loading, while three reinforced columns were subjected to axial compressive loading as reference. The parameters investigated herein were the eccentricity of the compressive loading and the layer of CFRP. Subsequently, the failure mode, ultimate load, deformation and strain of these reinforced columns were discussed. Their failure modes included the excessive bending deformation, serious buckling of steel jackets, crush of concrete and fracture of CFRP. Moreover, these reinforced columns exhibited a ductile failure globally. Both the eccentricity of the compressive loading and the layer of CFRP had a significant effect on the eccentrically compressive behaviour of reinforced columns. Finally, formulae for the evaluation of the ultimate load of reinforced columns were proposed. The theoretical formulae based on the ultimate equilibrium theory provided an effective, acceptable and safe method for designers to calculate the ultimate load of reinforced columns under eccentrically compressive loading.

Repairability Performance and Restoring Force Characteristics of Damaged H-shaped Steel Members after Repair

  • Mori, Kenjiro;Ito, Takumi;Sato, Hanako;Munemura, Hiroka;Matsumoto, Takeshi;Choi, Changhoon
    • International Journal of High-Rise Buildings
    • /
    • v.4 no.1
    • /
    • pp.57-64
    • /
    • 2015
  • Recently, new keywords such as "Resilience" and "Repairability" have been discussed from the perspective of the sustainability of damaged structures after a severe disaster. To evaluate the repairability and recovery of structures, it is necessary to establish an analytical method that can simulate the behavior of repaired structures. Furthermore, it is desirable to establish an evaluation method for the structural performance of repaired structures. This study investigates the repairability and recovery of steel members that are damaged by local buckling or cracks. This paper suggests a simple analytical model for repaired steel members, in order to simulate the inelastic behavior and evaluate the recoverability of the structural performance. There is good agreement between the analytical results and the test results. The proposed analytical method and model can effectively evaluate the recoverability.

Stability Analysis of Cracked Cantilever Beam with Tip Mass and Follower Force (끝단질량과 종동력을 가진 크랙 외팔 보의 안정성 해석)

  • Son, In-Soo;Yoon, Han-Ik;Ahn, Tae-Su
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.7 s.124
    • /
    • pp.605-610
    • /
    • 2007
  • In this paper a dynamic behavior(natural frequency) of a cracked cantilever beam subjected to follower force is presented. In addition, an analysis of the flutter and buckling instability of a cracked cantilever beam subjected to a follower compressive load is presented. Based on the Euler-Bernoulli beam theory, the equation of motion can be constructed by using the Lagrange's equation. The vibration analysis on such cracked beam is conducted to identify the critical follower force for flutter instability based on the variation of the first two resonant frequencies of the beam. Besides, the effect of the crack's intensity and location on the flutter follower force is studied. The crack section is represented by a local flexibility matrix connecting two undamaged beam segments. The crack is assumed to be in the first mode of fracture and to be always opened during the vibrations.