• Title/Summary/Keyword: Buck dc-dc converter

Search Result 389, Processing Time 0.029 seconds

Development of 3kW Low Voltage DC-DC Converter for Electric Vehicle (3kW급 전기자동차용 직류변환장치 개발)

  • Lee, Dong-Ryul;Park, Jun-Woo;Kang, Chan-Ho;Hong, Sung-Soo
    • Proceedings of the KIPE Conference
    • /
    • 2014.07a
    • /
    • pp.175-176
    • /
    • 2014
  • 본 논문은 전기자동차에 사용되는 배터리 충전기로써 3kW급 고효율 저전압 직류변환장치(LDC : Low Voltage DC-DC Converter) 개발에 관하여 기술한다. 토폴로지(Topology)는 LDC에 적합한 강압형 컨버터로써 전류를 분산시켜 효율증대가 가능한 다중 위상 벅 컨버터(Multi-phase Buck Converter) 구조를 채택하였다. 제안된 방식은 결합 인덕터(Coupled Inductor)를 사용하여 부피를 저감시킬 수 있으며, 디지털 제어를 이용하여 상위 제어기와의 통신을 할 수 있는 장점이 있다. 본 논문에서는 제안된 방식의 타당성을 검증하기 위하여 이론적으로 분석하며, 3kW급 시제품을 제작하여 제안방식의 타당성을 검증하였다.

  • PDF

An Efficiency Improvement of the Photovoltaic Generation System by Using the PPT based MPPT Converter (PPT 기반 MPPT 컨버터에 의한 태양광 발전시스템의 효율 개선)

  • Lee, Eun-Chul;Lee, Seong-Ryong
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.4
    • /
    • pp.216-223
    • /
    • 2006
  • In this paper, a methodology for the efficiency improvement of the photovoltaic system without adding some elements or increasing the cost comparing with the conventional system is discussed. It is suggested the optimal photovoltaic module configuration through its performance analysis, and also the suitable maximum power point tracking (MPPT) voltage considered the system cost and the efficiency of the converter. The high efficiency photovoltaic system by using the parallel power transfer (PPT) based MPPT converter is proposed and analyzed theoretically comparing with the conventional Buck type MPPT converter. Finally, it is designed and implemented the proposed photovoltaic system for supplying DC 48V by using the PPT based MPPT converter. And the effect of the efficiency improvement and the usefulness of the proposed system is proved through some preliminary simulation and experiment results.

Fault-tree based reliability analysis for bidirectional converter (고장나무를 이용한 양방향 컨버터의 신뢰성 분석)

  • Heo, Dae-ho;Kang, Feel-soon
    • Journal of IKEEE
    • /
    • v.23 no.1
    • /
    • pp.254-260
    • /
    • 2019
  • The failure rate of bidirectional dc-to-dc converter is predicted through the failure mode and effect analysis (FMEA) and the fault-tree analysis (FTA) considering the operational risk. In order to increase the driving voltage of the electric vehicle efficiently, the bidirectional converter is attached to the front of the inverter. It has a boost mode for discharging battery power to the dc-link capacitor and a buck mode for charging the regenerative power to the battery. Based on the results of the FMEA considering the operating characteristics of the bidirectional converter, the fault-tree is designed considering the risk of the converter. After setting the design parameters for the MCU for the electric vehicle, we analyze the failure rate of the capacitor due to the output voltage ripple and the inductor component failure rate due to the inductor current ripple. In addition, we obtain the failure rate of major parts according to operating temperature using MIL-HDBK-217F. Finally, the failure rate and the mean time between failures (MTBF) of the converter are predicted by reflecting the part failure rate to the basic event of the fault-tree.

A Current-Mode DC-DC Buck Converter with PFM to Improve the Light-Load Efficiency (Light-load에서 고효율을 가지는 PFM 전류모드 DC-DC Buck 변환기)

  • Ahn, Young-Kook;Nam, Hyun-Seok;Roh, Jeong-Jin
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.601-602
    • /
    • 2008
  • This paper presents pulse-frequency modulation(PFM) to improve the light-load efficiency. The proposed circuit is designed by using the device parameter of standard $0.13{\mu}m$ CMOS process. The performance of proposed circuit is evaluated by HSPICE simulation Measured efficiency in a light-load is measured 78-90 % for 0.1 to 100mA output current.

  • PDF

Comparison of Active-Clamp and ZVT Techniques Applied to Tapped-Inductor DC-DC Converter with Low Voltage and Large Current

  • Abe Seiya;Ninomiya Tamotsu
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.222-226
    • /
    • 2001
  • This paper compares three kinds of soft-switching circuits from viewpoints of surge suppression, load characteristic, and power efficiency for a tapped-inductor buck converter with low voltage and high current. As a result, these soft-switching techniques have achieved much higher efficiency of $80\%$ when compared with a hard-switching buck converter for the output condition of 1V and 20A.

  • PDF

Compare of buck-boost converter and Boost converter using the IC MPPT method Efficiency (IC MPPT 방법을 이용한 벅-부스트 컨버터와 부스트 컨버터의 효율분석 및 비교)

  • Kim, Yu-Tak;Ko, Jae-Sub;Seo, Tae-Young;Kang, Sung-Min;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.952-953
    • /
    • 2015
  • In this paper, various MPPT control in the most simple and widely used method of IC using the method According to the type of DC-DC converter to analyze the efficiency buck-boost convertor, Cuk convertor using each efficiency was analyzed.

  • PDF

Characteristic Analysis of Buck Converter by using the Non-Linear Instantaneous Following PWM Controller (강압형 컨버터의 비선형 순시추종 PWM 제어기의 특성 분석)

  • Ra, Byung-Hun;Kim, Sang-Don;Kwon, Soon-Kurl;Lee, Hyun-Woo
    • Proceedings of the KIEE Conference
    • /
    • 2002.11c
    • /
    • pp.378-381
    • /
    • 2002
  • Instantaneous following PWM control technique is pulsed nonlinear dynamic control method. This new control technique using analog integrator is proposed to control the duty ratio D of DC-DC converter. In this control method, the duty ratio of a switch is exactly equal to or proportional to the control reference in the steady state or in a transient. Proposed control method compensates power source perturbation in one switching cycle, and the average value of the dynamic reference in one switching cycle. There is no steady state error nor dynamic error between the control reference and the average value of the switched variable. Experiments with buck converter have demonstrated the robustness of the control method and verified theoretical prediction. The control method is very general and applicable to all type PWM.

  • PDF

TID and SEGR Testing on MOSFET of DC/DC Power Buck Converter (DC/DC 강압컨버터용 MOSFET의 TID 및 SEGR 실험)

  • Lho, Young Hwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.11
    • /
    • pp.981-987
    • /
    • 2014
  • DC/DC switching power converters are commonly used to generate a regulated DC output voltage with high efficiency. The DC/DC converter is composed of a MOSFET (metal-oxide semiconductor field effect transistor), a PWM-IC (pulse width modulation-integrated circuit) controller, inductor, capacitor, etc. It is shown that the variation of threshold voltage and the breakdown voltage in the electrical characteristics of MOSFET occurs by radiation effects in TID (Total Ionizing Dose) testing at the low energy ${\gamma}$ rays using $^{60}Co$, and 5 heavy ions make the gate of MOSFET broken in SEGR (Single Event Gate Rupture) testing. TID testing on MOSFET is accomplished up to the total dose of 40 krad, and the cross section($cm^2$) versus LET(MeV/mg/$cm^2$) in the MOSFET operation is studied at SEGR testing after implementation of the controller board.

A Novel Structure for the Improved Switching Time of 50V Class Vertical Power MOSFET

  • Cho, Doohyung;Park, Kunsik;Kim, Kwangsoo
    • Journal of IKEEE
    • /
    • v.19 no.1
    • /
    • pp.110-117
    • /
    • 2015
  • In this paper, a novel trench power MOSFET using a Separate-W-gated technique MOSFET (SWFET) is proposed. Because the SWFET has a very low $Q_{GD}$ compared to other forms of technology, it can be applied to high-speed power systems. The results found that the SWFET-applied $Q_{GD}$ was decreased by 40% when compared to simply using the more conventional trench gate MOSFET. $C_{ISS}$ (input capacitance : $C_{GS}+C_{GD}$), $C_{OSS}$ (output capacitance : $C_{GD}+C_{DS}$) and $C_{RSS}$ (reverse recovery capacitance : $C_{GD}$) were improved by 24%, 40%, and 50%, respectively. The switching characteristics of the inverter circuit shows a 24.9% enhancement of reverse recovery time, and the power efficiency of the DC-DC buck converter increased by 14.2%. In addition, the proposed SWFET does not require additional process steps and There was no degradation in the electrical performance of the current-voltage and on-resistance.

Variable Charger of Vehicle using Relay (릴레이를 이용한 차량용 배터리의 가변 충전기)

  • Song, Sung-Geun;Chung, Seung-Tae;Kang, Sung-Gu;Lee, Sang-Hun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.9
    • /
    • pp.47-56
    • /
    • 2012
  • This research is to develop satiable battery charger with a variety of capacity and voltage specifications of battery. For this, voltage or current were controlled through buck converter which is DC voltage that already received three-phase at primary side and passed bridge rectifier diode. And, it was comprised of full-bridge converter and HFTR for insulation and a square wave AC. The transformer primary side was comprised in series to divide certain charging current and the secondly side was comprised of 6 fixed transformers so that they can generate certain amount of power and various output voltage through relay parallel compound 6 DC Link outputs. To confirm such structure's verification and validity, simulation with PSIM was conducted, and validity of proposed variable charger system was verified through 3kW stack production.