• Title/Summary/Keyword: Bubble Method

Search Result 456, Processing Time 0.029 seconds

Properties of Bubble used in Concrete ac cording to Change in Manufacturing Condition

  • Byoungil Kim
    • Architectural research
    • /
    • v.26 no.1
    • /
    • pp.13-20
    • /
    • 2024
  • This study is a research investigation into the properties of bubbles that affect the characteristics of foamed concrete during its production. The study examined the properties of bubbles based on the manufacturing conditions. To investigate these properties, the selected experimental factors included bead size, the length/diameter ratio of the bubble-generating tube, and compressed air. The experimental design used a design of experiments, and the test results were analyzed using analysis of variance. The foaming agent used to generate bubbles was AES (Alcohol Ethoxy Sulfate), and the method employed for bubble manufacture was the pre-foaming method. In the test results, a significant factor affecting the foaming rate of bubbles was the bead size; the highest foaming rate was observed when using 2mm beads. Bead size also primarily influenced the volume change of the aqueous solution, while other factors did not affect the foaming rate and volume change. None of the factors affected the change in bubble size, but compressed air was considered the main factor affecting bubble size and its change. The foaming rate and volume change of the aqueous solution showed a high correlation with each other. Spherical bubbles in the early stage eventually transformed into angular bubbles. Moreover, over time, it was observed that the bubble size increased.

OPTIMIZATION FOR THE BUBBLE STABILIZED LEGENDRE GALERKIN METHODS BY STEEPEST DESCENT METHOD

  • Kim, Seung Soo;Lee, Yong Hun;Oh, Eun Jung
    • Honam Mathematical Journal
    • /
    • v.36 no.4
    • /
    • pp.755-766
    • /
    • 2014
  • In the discrete formulation of the bubble stabilized Legendre Galerkin methods, the system of equations includes the artificial viscosity term as the parameter. We investigate the estimation of this parameter to get the optimal solution which minimizes the maximum error. Some numerical results are reported.

Numerical Simulation of Bubble Motion During Nucleate Boiling (핵비등에서의 기포거동에 관한 수치해석)

    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.3
    • /
    • pp.389-396
    • /
    • 2001
  • Direct numerical simulation of bubble growth and merger process on a single nucleation site during partial nucleate boiling is performed. The equations governing conservation of mass, momentum and energy are solved using a finite difference method combined with a level set method for capturing the vapor-liquid interface. The level set method is modified to include the effects of phase change at the interface and contact angle at the wall. Also, a simplified formulation for predicting the evaporative heat flux in a thin liquid micro-layer is developed and incorporated into the level set formulation. Based on the numerical results, the bubble growth and merger pattern and its effect on the heat transfer are discussed.

Numerical Study of Bubble Growth in a Microchannel (미세관에서의 기포성장에 관한 수치적 연구)

  • Seo, Ki-Chel;Son, Gi-Hun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.8 s.227
    • /
    • pp.996-1003
    • /
    • 2004
  • The bubble motion during nucleate boiling in a microchannel is investigated by numerically solving the equations governing conservation of mass, momentum and energy in the liquid and vapor phases. The liquid-vapor interface is tracked by a level set method which is modified to include the effects of phase change at the interface and contact angle at the wall. Also, the evaporative heat flux from the thin liquid film that forms underneath a growing bubble attached to the wall is incorporated in the analysis. Based on the numerical results, the effects of channel size, contact angle, wall superheat and waiting period on the bubble growth and heat transfer in a microchannel are quantified.

Mock-Up Test On Anti-Freezing Method with Double bubble Sheets Subject to Cold weather Banking (이중버블시트를 이용한 동상방지공법의 동절기 성토공사 Mock-up 실험)

  • Hong, Seak-Min;Son, Ho-Jung;Oh, Chi-Hyun;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.11a
    • /
    • pp.33-34
    • /
    • 2011
  • In this study, using the double bubble sheet to anti-freezing method in winter the soil embanking Mock up as a part of the development process was carried out. As results, two layers of the double bubble sheet effect 12.6℃~13.8℃ temperature difference of out door temperature that proved superior insulation and thermal performance of the double bubble sheet.

  • PDF

Experimental Analysis of Unsteady Bubble Behaviors Using Three-Dimensional Tomography

  • Ko, Han-Seo;Kim, Yong-Jae
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.25 no.6
    • /
    • pp.431-438
    • /
    • 2005
  • Bubble behaviors in a circular tube have been analyzed numerically and experimentally by a three-dimensional tomography method, Initially, a multiplicative algebraic reconstruction technique (MART) which showed better results for previous studies of numerical simulations has been performed to confirm the accuracy of the three-dimensional reconstruction for the two-phase flow using a computer-synthesized phantom, Then, bubble behaviors have been investigated experimentally by the three-dimensional MART method using real projected data captured simultaneously by a laser and three CCD cameras for three angles of view, Also, the transient reconstructions have been attempted to analyze the real-time oxygen-bubble movements in water by the interval of 1/30 second.

Size Characteristics of Micro-bubbles According to Applied Voltage and Electrode materials (전해부상에서 전압과 극판 재질에 따른 미세기포의 크기 특성)

  • Park, Yong-hyo;Han, Moo-young
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.16 no.6
    • /
    • pp.663-669
    • /
    • 2002
  • Electro-flotation (EF) has shown advantages, such as a high removal efficiency and easy control of bubble generation, over dissolved air flotation. However, the fundamental characteristics of the process have not been investigated in detail. According to recent modeling results from trajectory analysis, the size of the bubble is one of the most important factors that affect the efficiency of collision between bubble and particle. In this paper, the size characteristics of bubbles generated from EF under various conditions are measured using a new method for bubble size measurement, the Particle Counter Method (PCM). The size of the generated bubbles was found to be constant with respect to applied voltage but to vary with the electrode materials. These results and their implications are discussed.

Mesh Generation Methodology for FE Analysis of 3D Structures Using Fuzzy Knowledge and Bubble Method (피지이론과 버블기법을 이용한 3차원 구조물의 유한요소해석을 위한 요소생성기법)

  • Lee, Joon-Seong;Lee, Eun-Chul
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.2
    • /
    • pp.230-235
    • /
    • 2009
  • This paper describes an automatic finite element mesh generation for finite element analysis of three-dimensional structures. It is consisting of fuzzy knowledge processing, bubble meshing and solid geometry modeler. This novel mesh generation process consists of three subprocesses: (a) definition of geometric model, i.e. analysis model, (b) generation of bubbles, and (c) generation of elements. One of commercial solid modelers is employed for three-dimensional solid structures. Bubble is generated if its distance from existing bubble points is similar to the bubble spacing function at the point. The bubble spacing function is well controlled by the fuzzy knowledge processing. The Delaunay method is introduced as a basic tool for element generation. Automatic generation of finite element for three-dimensional solid structures holds great benefits for analyses. Practical performances of the present system are demonstrated through several mesh generations for 3D geometry.

Field Application of Insulation Curing Method with Double Bubble Sheets Subject to Cold Weather (이중버블시트를 이용한 단열양생공법의 한중콘크리트 현장적용)

  • Hong, Seak-Min;Baek, Dae-Hyun;Kim, Jong;Jeon, Chung-Kun;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2008.05a
    • /
    • pp.57-60
    • /
    • 2008
  • This study investigated the results of insulation heat curing method using double layer bubble sheet in slab concrete and mass concrete in cold weather environment. First of all, when double bubble sheets are applied, it was shown that slab concrete was protected from early freezing by remaining between 6 and 15℃ even in case outside temperature drops -9℃ below zero until the 2nd day from piling, and in the case of mass concrete, with the maximum temperature difference between the center and surface less than 4℃, crack occurrence index was close to 2 and no hydration heat crack occurred by internal constraint. The insulation heat preservation curing method using the double bubble sheet applied in this field prevented early freezing owing to stable curing temperature management, deterring concrete strength development delay at low temperature, and obtained the needed strength. Also, it was proven that the method is highly effective and economic for cold weather concrete quality maintenance through curing cost reduction like construction period shortening and labor cost reduction, etc by reducing the process of temporary equipment installation and disassembling.

  • PDF

Field Application of Insulation Curing Method for the Concrete applying Double Layer Bubble Sheets Subjected to Cold Weather (이중버블시트를 이용한 단열보온 양생공법의 한중콘크리트 현장적용)

  • Hong, Seak-Min;Son, Ho-Jung;Oh, Chi-Hyun;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.05a
    • /
    • pp.83-85
    • /
    • 2011
  • This study investigated the results of insulation heat curing method using double layer bubble sheet in concrete in cold weather environment. First of all, when double bubble sheets are applied, it was shown that concrete was protected from early freezing by remaining between 7℃ and 3℃ even in case outside temperature drops -7℃ below zero until the 3d day from piling. The insulation heat preservation curing method using the double bubble sheet applied in this field prevented early freezing owing to stable curing temperature management, deterring concrete strength development delay at low temperature, and obtained the needed strength. Also, it was proven that the method is highly effective and economic for cold weather concrete quality maintenance through curing cost reduction like construction period shortening and labor cost reduction, etc by reducing the process of temporary equipment installation and disassembling.

  • PDF