DOI QR코드

DOI QR Code

Mesh Generation Methodology for FE Analysis of 3D Structures Using Fuzzy Knowledge and Bubble Method

피지이론과 버블기법을 이용한 3차원 구조물의 유한요소해석을 위한 요소생성기법

  • 이준성 (경기대학교 기계시스템공학과) ;
  • 이은철 (경기대학교 대학원 기계공학과)
  • Published : 2009.04.25

Abstract

This paper describes an automatic finite element mesh generation for finite element analysis of three-dimensional structures. It is consisting of fuzzy knowledge processing, bubble meshing and solid geometry modeler. This novel mesh generation process consists of three subprocesses: (a) definition of geometric model, i.e. analysis model, (b) generation of bubbles, and (c) generation of elements. One of commercial solid modelers is employed for three-dimensional solid structures. Bubble is generated if its distance from existing bubble points is similar to the bubble spacing function at the point. The bubble spacing function is well controlled by the fuzzy knowledge processing. The Delaunay method is introduced as a basic tool for element generation. Automatic generation of finite element for three-dimensional solid structures holds great benefits for analyses. Practical performances of the present system are demonstrated through several mesh generations for 3D geometry.

본 논문은 3차원구조물의 유한요소해석을 위한 자동 유한요소 생성에 관한 것으로 퍼지이론과 버블요소 생성기법, 상용 솔리드모델러로 구성되어진다. 새로운 요소생성과정은 (a) 해석모델인 형상모델링 정의, (b) 버블생성, 그리고 (c) 요소생성으로 이루어진다. 형상모델링에는 상용 솔리드모델러를 이용하였으며 버블은 각 지점에서의 버블간격함수에 의해 생성되어진다. 버블간격 함수는 지식처리수법에 의해 조절되어 진다. 요소생성을 위해서는 기본적으로 데로우니방법을 도입하였다. 이러한 3차원 구조물에 대한 유한요소의 자동생성은 해석을 위해 큰 잇점이 있다. 실제적인 현 시스템의 효용성을 검증하기위해 3차원 형상에 대한 예를 제시하였다.

Keywords

References

  1. Fuchs, A., 'Almost regular Delaunay Triangulations,' International Journal of Numerical Methods in Engineering, Vol. 40, pp. 4595-4610, 1997 https://doi.org/10.1002/(SICI)1097-0207(19971230)40:24<4595::AID-NME274>3.0.CO;2-E
  2. Choi, C.K., Lee, G.H. and Chung, H.J., 'An adaptive analysis in the element-free Galerkin method using bubble meshing technique', Comp. Struct. Eng., Vol. 15, pp. 84-95, 2002
  3. Watson, D. F., 'Computing The N-Dimensional Delaunay Tessellation with Application to Voronoi Polytopes', The Computer Journal, Vol. 24, No.2, pp. 167-172, 1991 https://doi.org/10.1093/comjnl/24.2.167
  4. Buraty, E., 'Fully Automatic Three-Dimensional Mesh Generator for Complex Geometries', Int. Journal for Numerical Methods in Engineering, Vol. 30, pp. 931-952, 1990
  5. J.S. Lee, 'Development of the Fuzzy-Based System for Stress Intensity Factor Analysis', Int. Journal of Fuzzy Logic and Intelligent Systems, Vol. 12, No.3, pp. 255-260, 2002 https://doi.org/10.5391/JKIIS.2002.12.3.255
  6. Schroeder, W. J. and Shephard, M. S., 'Combined Octree/Delaunay Method for Fully Automatic 3-D Mesh Generation', Int. Journal for Numerical Methods in Engineering, Vol. 29, pp. 1990
  7. Al-Nasra, M. and Nguyen, D. T., 'An Algorithm for Domain Decomposition in Finite Element Analysis', Computers and Structures, Vol. 39, No. pp. 277-289, 1981
  8. J.S. Lee 'Automated CAE for Three-Dimensional Complex Geometry', Doctoral Thesis, The University of Tokyo 1995
  9. Zadeh, L. A., 'Fuzzy algorithms', Information and Control, Vol. 12, pp. 94-102, 1968. and Cybernetics, SMC-3 pp.28-44, 1983 https://doi.org/10.1016/S0019-9958(68)90211-8