• 제목/요약/키워드: Broken rotor bar fault

검색결과 25건 처리시간 0.013초

Monolith and Partition Schemes with LDA and Neural Networks as Detector Units for Induction Motor Broken Rotor Bar Fault Detection

  • Ayhan Bulent;Chow Mo-Yuen;Song Myung-Hyun
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • 제5B권2호
    • /
    • pp.103-110
    • /
    • 2005
  • Broken rotor bars in induction motors can be detected by monitoring any abnormality of the spectrum amplitudes at certain frequencies in the motor current spectrum. Broken rotor bar fault detection schemes should rely on multiple signatures in order to overcome or reduce the effect of any misinterpretation of the signatures that are obscured by factors such as measurement noises and different load conditions. Multiple Discriminant Analysis (MDA) and Artificial Neural Networks (ANN) provide appropriate environments to develop such fault detection schemes because of their multi-input processing capabilities. This paper describes two fault detection schemes for broken rotor bar fault detection with multiple signature processing, and demonstrates that multiple signature processing is more efficient than single signature processing.

A Method for Indentifying Broken Rotor Bar and Stator Winding Fault in a Low-voltage Squirrel-cage Induction Motor Using Radial Flux Sensor

  • Youn, Young-Woo;Hwang, Don-Ha;Sun, Jong-Ho;Kang, Dong-Sik
    • Journal of Electrical Engineering and Technology
    • /
    • 제6권5호
    • /
    • pp.666-670
    • /
    • 2011
  • In this paper, a method for detecting broken rotor bar and stator winding fault in a low voltage squirrel-case induction motor using an air-gap flux variation analysis is proposed to develop a simple and low cost diagnosis technique. To measure the leakage flux in radial direction, a radial flux sensor is designed as a search coil and installed between stator slots. The proposed method is able to identify two kinds of motor faults by calculating load condition of motors and monitoring abnormal signals those are related with motor faults. Experimental results obtained on 7.5kW three-phase squirrel-cage induction motors are discussed to verify the performance of the proposed method.

Robust Diagnosis Algorithm for Identifying Broken Rotor Bar Faults in Induction Motors

  • Hwang, Don-Ha;Youn, Young-Woo;Sun, Jong-Ho;Kim, Yong-Hwa
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권1호
    • /
    • pp.37-44
    • /
    • 2014
  • This paper proposes a new diagnosis algorithm to detect broken rotor bars (BRBs) faults in induction motors. The proposed algorithm is composed of a frequency signal dimension order (FSDO) estimator and a fault decision module. The FSDO estimator finds a number of fault-related frequencies in the stator current signature. In the fault decision module, the fault diagnostic index from the FSDO estimator is used depending on the load conditions of the induction motors. Experimental results obtained in a 75 kW three-phase squirrel-cage induction motor show that the proposed diagnosis algorithm is capable of detecting BRB faults with an accuracy that is superior to a zoom multiple signal classification (ZMUSIC) and a zoom estimation of signal parameters via rotational invariance techniques (ZESPRIT).

전류신호를 이용한 유도전동기의 회전자봉 결함검출에 관한 연구 (A Study on Detection of Broken Rotor Bars in Induction Motors Using Current Signature Analysis)

  • 신대철;정병훈
    • 한국소음진동공학회논문집
    • /
    • 제12권4호
    • /
    • pp.287-293
    • /
    • 2002
  • The unexpected failure of the induction motor makes the downtime of production, and the cost of the process cessation enormous. To reduce the downtime and increase the reliability of the motor, the vibration measurements for the fault detection have been used previously. Recently motor current signature analysis(MCSA) has been adapted for the fault detection and diagnosis of the motors. MCSA provides a powerful analysis tool for detecting the presence of mechanical and electrical faults in both the motor and driven equipment. In this paper, the fault severity of the rotor bar has been derived in terms of the resistance change which is calculated from the equivalent circuit model. Results show that the fault of the rotor can be easily detected and the measured value of the resistance change is verified by the detected fault from on-site tests using MCSA for the induction motors in an iron foundry.

Intelligent Diagnosis of Broken Bars in Induction Motors Based on New Features in Vibration Spectrum

  • Sadoughi, Alireza;Ebrahimi, Mohammad;Moallem, Mehdi;Sadri, Saeid
    • Journal of Power Electronics
    • /
    • 제8권3호
    • /
    • pp.228-238
    • /
    • 2008
  • Many induction motor broken bar diagnosis methods are based on evaluating special components in machine signals spectrums. Current, power, flux, etc are among these signals. Frequencies related to a broken rotor fault are slip dependent, therefore, correct diagnosis of fault - especially when obtrusive frequency components are present - depends on accurate determination of motor velocity and slip. The traditional methods typically require several sensors that should be pre-installed in some cases. This paper presents a diagnosis method based on only a vibration sensor. Motor velocity oscillation due to a broken rotor causes frequency components at twice slip frequency difference around speed frequency in vibration spectrum. Speed frequency and its harmonics as well as twice supply frequency, can easily and accurately be found in a vibration spectrum, therefore th motor slip can be computed. Now components related to rotor fault can be found. It is shown that a trained neural network - as a substitute for an expert person - can easily categorize the existence and the severity of a fault according to the features extracted from the presented method. This method requires no information about th motor internal and has been able to diagnose correctly in all the laboratory tests.

농형 유도전동기의 회전자 바 손상에 따른 특성 해석 (Characteristics Analysis of Squirrel Cage Induction Motors with Rotor Bar Broken)

  • 김병국;김미정;조윤현;임성환;황돈하;강동식
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 제37회 하계학술대회 논문집 B
    • /
    • pp.779-780
    • /
    • 2006
  • This paper describes the effects of rotor-bar broken in induction machines. The analysis has been made on 7.5kW, 4P, 1,768[rpm], three-phase induction motors in a healthy and broken-rotor bars fault conditions at rated loading conditions. The effects of the rotor-bar broken, magnetic force are investigated by finite element method (FEM) and experiment. The results can be useful for real-time on-line monitoring of an induction motor.

  • PDF

축방향 누설자속 측정에 의한 유도전동기의 회전자 결함검출에 관한 연구 (A Study of Rotor Fault Detection for the Induction Motor Using Axial Leakage Magnetic Flux)

  • 신대철;김영환
    • 조명전기설비학회논문지
    • /
    • 제20권1호
    • /
    • pp.132-137
    • /
    • 2006
  • 유도전동기에 대한 결함 검출의 도구로서 축방향 누설자속 측정 방법을 사용할 수 있는가를 평가하고 전동기고장 검출에 관한 진단 알고리즘을 개발하기 위한 회전자에 관한 2번째 논문이다. 결함 검출을 위해 운전 중인 전동기의 끝단에 설치된 자속코일 센서로 누설자속 신호를 수집하며 전동기의 각종 결함을 검출하기 위해 시간과 주파수 영역에서 신호를 분석하였다. 센서 신호 형상이 전동기 각각의 결함에 대해 시간과 주파수 영역에서 해석하였다. 전동기의 회전자 관련 격함인 회전자봉 파손, 단락환 파손 및 회전자 편심이 축방향에서 측정된 고해상도의 스펙트럼으로부터 검출할 수 있는 방법을 확인하였다. 누설자속 스펙트럼으로부터 특정 주파수와 회전자봉 통과주파수의 측파대를 분석함으로서 회전자 결함을 검출하는 방법을 알았다. 또 유도전동기에 대하여 축방향 누설자속 측정을 위한 최적의 자속코일센서 및 측정시스템을 검증하고 회전자 결함을 검출하기 위한 방법을 개발하였다.

Detection of Rotor Bar Faults in Field Oriented Controlled Induction Motors

  • Akar, Mehmet
    • Journal of Power Electronics
    • /
    • 제12권6호
    • /
    • pp.982-991
    • /
    • 2012
  • In this study, a new method has been presented for the detection of broken rotor bar (BRB) faults in inverter driven induction motors controlled via Field Oriented Control (FOC). To this end, a FOC controlled induction motor with a BRB fault was modeled using the Matlab/Simulink program. Experiments were carried out using the prepared simulation model at various loads and operating speeds. The motor current and speeds were monitored for healthy, 1, 2 and 3 BRB faults. The Resampling Based Order Tracking Analysis (RB-OTA) method was applied to the monitored signals. The obtained results were compared by using the classic Fast Fourier Transform (FFT) method. When the obtained results were analyzed via the FFT method no information regarding any faults was determined in the run up or run down regions of the motor and the presented method gave very good results. The reliability of the proposed method was validated with experimental results. The main innovative part of this study is that the RB-OTA method was implemented on the induction motor current signal for detecting BRB faults.

3상 농형 유도전동기 회전자 바의 고장진단에 관한 연구 (A Study on The Diagnosis of Broken Rotor Bars in Three Phase Squirrel-Case Induction Motor)

  • 김근웅;권중록;이갑재;김완기
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 하계학술대회 논문집 B
    • /
    • pp.635-637
    • /
    • 2001
  • The faults of the squirrel cage induction motor is grew increasingly complex as the faults resulting in the shorting of a stator winding and the broken rotor bar or cracked rotor end ring, bearing faults, and so on. The users of electrical machines initially relied on simple protections such as over-current, over-voltage, earth-fault, etc. to ensure safe and reliable operation. but this method cause heavy financial losses and the threat of safety therefore it has now become very important to diagnose faults at there very inception. in this paper, we are going to discuss the detection method of broken rotor bar of squirrel cage induction motor by the motor current signal analysis(MCSA) and the opening terminal voltage signal analysis.

  • PDF

회전자 바 손상 및 고정자 권선 단락 고장 조건에 따른 유도전동기의 구동 특성 (Operating Characteristics of Induction Motors with Broken Rotor Bar and Stator Winding Fault)

  • 장석명;박유섭;최장영;유대준;구철수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2011년도 제42회 하계학술대회
    • /
    • pp.1079-1080
    • /
    • 2011
  • This paper deals with the operating characteristics of induction motors with broken rotor bar, stator winding inter-turn short and their complex fault conditions. The considered operating characteristics are phase current, torque and speed. Since the operating characteristics of induction motors are directly related to their slip conditions, this paper built the experimental set to adjust the speed of induction motor with a permanent magnet synchronous generator connected to a load bank. From the various experimental results, it is shown that the faults do not highly affect on the operating characteristics of induction motors in low slip conditions, but the fault characteristics can be easily found in larger slip conditions.

  • PDF