• Title/Summary/Keyword: Broken detection

Search Result 92, Processing Time 0.019 seconds

Conceptual Design of Constructed Wetlands to Treat Acid Mine Drainage from the Dalsung W-CU Mine, Korea (달성중석광산(達城重石鑛山) 산성폐수(酸性廢水) 처리(處理)를 위(爲)한 인공소택지(人工沼澤池) 개념(槪念) 설계(設計))

  • Hong, Yong-Kook;Filipek, L.;Na, Hyun-Joon
    • Economic and Environmental Geology
    • /
    • v.29 no.1
    • /
    • pp.65-75
    • /
    • 1996
  • Sulfate reduction and the precipitation of metal sulfides may have great potential to improve water quality of mine effluents in wetland treatment systems. Laboratory experiments using sulfate reducing bacteria (SRB) and limestone to treat effluents from the abandoned Dalsung tungsten-copper mine show that encouraging results, that have been attributed to sulfate reduction. Fe, Al, Cd, Cu and Zn are reduced to below detection limits with $99{\sim}100%$ metal removal rates, Mn is reduced by at least 90% to below 8.0 mg/l, and the pH is raised from 5.12 to 7.60 after 53 days of experiments. In the staged design, laboratory experiments are initiated to determine what would be reasonable substrate materials for remediation of the mine effluents. A substrate mixture containing 70% oak compost and 30% mushroom compost maintains $0.03{\sim}0.04mM$ of lactate, which provides good condition for the SRB granule. A downflow SRB wetland system is proposed as follows : 1) The lower part of the treatment system consists with a 25 cm thick layer of high quality (above 95% of $CaCO_3$) of limestone; 2) The geotextile (geonet) is recommended to be spread on the limestone bed to prevent clogging the limestones with the substrates; 3) The mixture of substrates with 70% oak and 30% spent mushroom composts, and SRB granules overlain on top of the geonet with 25 cm height. The sizes of the passive treatment systems are calculated according to metal loading and permeability criteria : 1) $220m^3$ ($15{\times}15{\times}1m$) for -1 level effluents; 2) $28m^3$ ($5.3{\times}5.3{\times}1m$) for -2 level; and 3) $2700m^3$ ($52{\times}52{\times}1m$) for the -3 level. The -3 level system needs to be broken down into 5 to 15 cells.

  • PDF

A Study on Defense and Attack Model for Cyber Command Control System based Cyber Kill Chain (사이버 킬체인 기반 사이버 지휘통제체계 방어 및 공격 모델 연구)

  • Lee, Jung-Sik;Cho, Sung-Young;Oh, Heang-Rok;Han, Myung-Mook
    • Journal of Internet Computing and Services
    • /
    • v.22 no.1
    • /
    • pp.41-50
    • /
    • 2021
  • Cyber Kill Chain is derived from Kill chain of traditional military terms. Kill chain means "a continuous and cyclical process from detection to destruction of military targets requiring destruction, or dividing it into several distinct actions." The kill chain has evolved the existing operational procedures to effectively deal with time-limited emergency targets that require immediate response due to changes in location and increased risk, such as nuclear weapons and missiles. It began with the military concept of incapacitating the attacker's intended purpose by preventing it from functioning at any one stage of the process of reaching it. Thus the basic concept of the cyber kill chain is that the attack performed by a cyber attacker consists of each stage, and the cyber attacker can achieve the attack goal only when each stage is successfully performed, and from a defense point of view, each stage is detailed. It is believed that if a response procedure is prepared and responded, the chain of attacks is broken, and the attack of the attacker can be neutralized or delayed. Also, from the point of view of an attack, if a specific response procedure is prepared at each stage, the chain of attacks can be successful and the target of the attack can be neutralized. The cyber command and control system is a system that is applied to both defense and attack, and should present defensive countermeasures and offensive countermeasures to neutralize the enemy's kill chain during defense, and each step-by-step procedure to neutralize the enemy when attacking. Therefore, thist paper proposed a cyber kill chain model from the perspective of defense and attack of the cyber command and control system, and also researched and presented the threat classification/analysis/prediction framework of the cyber command and control system from the defense aspect