Conceptual Design of Constructed Wetlands to Treat Acid Mine Drainage from the Dalsung W-CU Mine, Korea

달성중석광산(達城重石鑛山) 산성폐수(酸性廢水) 처리(處理)를 위(爲)한 인공소택지(人工沼澤池) 개념(槪念) 설계(設計)

  • Hong, Yong-Kook (Korea Institute of Geology, Mining and Materials) ;
  • Filipek, L. (Schafer & Assoc.) ;
  • Na, Hyun-Joon (Korea Advanced Institute of Science and Technology)
  • Received : 1995.12.11
  • Published : 1996.02.28

Abstract

Sulfate reduction and the precipitation of metal sulfides may have great potential to improve water quality of mine effluents in wetland treatment systems. Laboratory experiments using sulfate reducing bacteria (SRB) and limestone to treat effluents from the abandoned Dalsung tungsten-copper mine show that encouraging results, that have been attributed to sulfate reduction. Fe, Al, Cd, Cu and Zn are reduced to below detection limits with $99{\sim}100%$ metal removal rates, Mn is reduced by at least 90% to below 8.0 mg/l, and the pH is raised from 5.12 to 7.60 after 53 days of experiments. In the staged design, laboratory experiments are initiated to determine what would be reasonable substrate materials for remediation of the mine effluents. A substrate mixture containing 70% oak compost and 30% mushroom compost maintains $0.03{\sim}0.04mM$ of lactate, which provides good condition for the SRB granule. A downflow SRB wetland system is proposed as follows : 1) The lower part of the treatment system consists with a 25 cm thick layer of high quality (above 95% of $CaCO_3$) of limestone; 2) The geotextile (geonet) is recommended to be spread on the limestone bed to prevent clogging the limestones with the substrates; 3) The mixture of substrates with 70% oak and 30% spent mushroom composts, and SRB granules overlain on top of the geonet with 25 cm height. The sizes of the passive treatment systems are calculated according to metal loading and permeability criteria : 1) $220m^3$ ($15{\times}15{\times}1m$) for -1 level effluents; 2) $28m^3$ ($5.3{\times}5.3{\times}1m$) for -2 level; and 3) $2700m^3$ ($52{\times}52{\times}1m$) for the -3 level. The -3 level system needs to be broken down into 5 to 15 cells.

대구(大邱) 달성중석(達城重石) 폐광산(廢鑛山)에서 유출(流出)되는 유해(有害)한 산성광산(醒性鑛山) 폐수처리(廢水處理)를 위한 인공(人工) 소택지(沼澤池) 방법(方法)을 제시(提示)하였다. 황산염(黃酸鹽) 환원(環元) 박테리아 (SRB)를 이용(利用)한 약 2개월(個月)의 실내실험(室內實驗) 결과(結果) 폐수중(廢水中) 중금속(重金屬) 원소(元素) 제거효율(除去效率)은 Fe, Al, Cd, Cu와 Zn은 99-100%, Mn은 90%이며 pH는 5.12에서 7.60으로 상승(上昇)되었다. 황산염(黃醒鹽) 환원(還元) 박테리아의 먹이인 기질(基質)들 (Substrates)과 달성광산(連城鑛山) 폐수(廢水)의 실험(實驗)에서는 버섯퇴비(堆肥)가 참나무 퇴비(堆肥)보다 11배(倍) 정도(程度) SRB의 영향분(營養分)인 Lactate가 유출(抽出)됨이 밝혀졌다. 황산염(黃酸鹽) 환원(還元) 박테리아 소택지(沼澤池)의 내용물(內容物) 구성(構成)은 다음과 같다; 1) 최하부(最下部)에 25cm 높이의 고품질(高品質) 석회석(石灰石)(직경(直徑) 5cm)을 채운다 : 2) 70% 참나무 퇴비(堆肥)와 30% 버섯 퇴비(堆肥)의 혼합퇴비(混合堆肥)와 황산염(黃酸鹽) 환원(還元) 박테리아 입자(粒子)들을 잘 섞어서 25cm 높이로 석회암층(石灰岩層)위에 둔다 : 3) 혼합퇴비(混合堆肥)에 의한 석회암(石灰岩) 사이의 간극축소(間隙縮小)를 막기 위하여 석회암층(石灰岩層)과 혼합퇴비(混合堆肥) 중간(中間)에 Geotextile을 깔아둔다. 실제(實際) 현장적용(現場適用)을 위(爲)한 소택지(沼澤池) 크기는 중금속(重金屬) 부하량(負荷量)과 투수율(透水率) 에 따라서 계산(計算)한 결과(結果)-1편(片)은 $15m{\times}15m{\times}1m$, -2편(片)은 $5.3m{\times}5.5m{\times}1m$, 그리고 -3편(片) 하부(下部)에 $52m{\times}52m{\times}1m$임이 밝혀졌다. 그러나, -3편(片)의 경우는 소택지(沼澤池)가 너무 크므로 동일(同一) 소택지(沼澤池) 5~15개(個)의 작은 cell들로 분리함이 좋다.

Keywords