• 제목/요약/키워드: Brinkman Number

검색결과 14건 처리시간 0.019초

Extended Graetz Problem Including Axial Conduction and Viscous Dissipation in Microtube

  • Jeong Ho-Eyoul;Jeong Jae-Tack
    • Journal of Mechanical Science and Technology
    • /
    • 제20권1호
    • /
    • pp.158-166
    • /
    • 2006
  • Extended Graetz problem in microtube is analyzed by using eigenfunction expansion to solve the energy equation. For the eigenvalue problem we applied the shooting method and Galerkin method. The hydrodynamically isothermal developed flow is assumed to enter the microtube with uniform temperature or uniform heat flux boundary condition. The effects of velocity and temperature jump boundary condition on the microtube wall, axial conduction and viscous dissipation are included. From the temperature field obtained, the local Nusselt number distributions on the tube wall are obtained as the dimensionless parameters (Peclet number, Knudsen number, Brinkman number) vary. The fully developed Nusselt number for each boundary condition is obtained also in terms of these parameters.

Forced Convection in a Circular Pipe with a Partially Filled Porous Medium

  • Kim, Woo-Tae;Hong, Ki-Hyuek;Myung S. Jhon;John G. VanOsdo;Duane H. Smith
    • Journal of Mechanical Science and Technology
    • /
    • 제17권10호
    • /
    • pp.1583-1596
    • /
    • 2003
  • A study of forced convection in a circular pipe with a partially filled porous medium was numerically investigated. The Brinkman-Forchheimer extension of the Darcy model was used to analyze the and temperature distribution in the porous medium. Our study includes two types of porous layer configurations: (1) a layer attached at the tube wall extending inward towards the centerline and (2) a layer at the centerline extending outward. The effect of several parameters, such as Darcy number, effective viscosity, effective thermal conductivity, and inertia parameter, as well as the effect of geometric parameters, were investigated.

수평 다공층에서 수직 관통류가 자연대류 열전달에 미치는 영향에 관한 연구 (The Throughflow Effects on Natural Convection in Horizontal Porous Layer)

  • 서석진
    • 에너지공학
    • /
    • 제7권2호
    • /
    • pp.209-215
    • /
    • 1998
  • 본 연구에서는 수평 가공층의 하부에서 가열하고 상부에서 냉각하는 자연대류현상을 Brinkman-Darcy 방정식을 이용하고 하부 경계면에서 상부 경계면으로 균일한 관통류가 있을 경우를 고려하여 수직 관통류가 자연대류에 미치는 영향에 대하여 연구하였다. 관통류가 없을 경우의 임계 Rayleigh수와 있을 경우의 임계 Rayleigh수를 비교하였다. 또, 일정한 Rayleigh수에서의 관통류의 세기에 따른 Nusselt수, 등온선의 형태, 유동현상의 변화를 고찰하였다. 이와 같은 연구를 하기 위해 수치 해석적 연구로는 2차원 비정상 유동으로 가정하고 유한차분법(FDM)을 이용하였으며, 실험적 연구에서는 수치해석상의 결과를 검증하기 위해 액정(Liquid Crystal)을 시험체적 앞면에 부착하여 관통류의 세기에 따른 온도장의 재 분포를 가시화 하였다. 결론적으로 관통류는 순수 자연대류상에서의 온도장의 형태를 크게 변화시키고, 관통류의 세기가 강해짐으로써 대류 열전달의 불안정성이 감소함을 알 수 있었다. 또, Nusselt수를 구함으로써 대류열전달의 강도를 추정할 수 있었다.

  • PDF

원관내 Bingham Plastic의 층류 대류 열전달(1)해석적 연구-완전발달유동과 온도분포 발달유동(확장된 그래츠문제) (Laminar Convective Heat Transfer of a Bingham Plastic in a Circular Pipe(I) Analytical approach- thermally fully developed flow and thermally develping flow(the Graetz problem extended))

  • 민태기;유정열;최해천
    • 대한기계학회논문집B
    • /
    • 제20권12호
    • /
    • pp.3991-4002
    • /
    • 1996
  • Thermally fully developed and thermally developing laminar flows of a Bingham plastic in a circular pipe have been studied analytically. For thermally fully developed flow, the Nusselt numbers and temperature profiles are presented in terms of the yield stress and Peclet number, proposing a correlation formula between the Nusselt number and the Peclet number. The solution to the Graetz problem has been obtained by using the method of separation of variables, where the resulting eigenvalue problem is solved approximately by using the method of weighted residuals. The effects of the yield stress, Peclet and Brinkman numbers on the Nusselt number are discussed.

재생기를 가진 실린더내의 왕복유동에 관한 열전달 (Heat Transfer of Oscillating Flow in a Cylinder with Regenerator)

  • 김진호;이재헌;강병하
    • 대한기계학회논문집
    • /
    • 제19권7호
    • /
    • pp.1758-1769
    • /
    • 1995
  • The heat transfer of oscillating flow in a cylinder with regenerator was investigated by the moving boundary technique. The flow in regenerator was modeled by means of Brinkman Forchheimer-Extended-Darcy equation . Results showed that when piston moved toward right, velocity vectors near cylinder wall at left piston and right side of regenerator inclined to symmetric axis and velocity vectors near cylinder wall at right piston and left side of regenerator inclined to cylinder wall. And the time averaged Nusselt number was increased by 46.73% when the oscillatory frequency became twice and decreased by 31.46% when the oscillatory frequency became half. The time averaged Nusselt number was increased by 18.09% when thickness of the regenerator became twice and decreased by 7.53% when thickness of the regenerator became half. But mesh size of regenerator hardly affected the Nusselt number. And efficiency of regenerator was larger as the oscillatory frequency was smaller, thickness and mesh size of regenerator was larger.

이동하는 물체 주위의 압축성 유동에 대한 가상경계법 (IMMERSED BOUNDARY METHOD FOR COMPRESSIBLE VISCOUS FLOW AROUND MOVING BODIES)

  • 조용
    • 한국전산유체공학회지
    • /
    • 제13권3호
    • /
    • pp.35-43
    • /
    • 2008
  • A methodology for the simulation of compressible high Reynolds number flow over rigid and moving bodies on a structured Cartesian grid is described in this paper. The approach is based on a modified version of the Brinkman Penalization method. To avoid oscillations in the vicinity of the body and to simulate shcok-containing flows, a Weighted Essentially Non-Oscillatory scheme is used to discretize the spatial flux derivatives. For high Reynolds number viscous flow, two turbulence models of the two-equation Menter's SST URANS model and a two-equation Detached Eddy Simulation are implemented. Some simple flow examples are given to assess the accuracy of the technique. Finally, a moving grid capability is demonstrated.

수직$\cdot$수평 관통류를 갖는 수평 다공층에서 자연대류 연구 (The Natural Convection in Horizontal Porous Layer with Vertical or Horizontal Throughflow)

  • 서석진;박찬국
    • 한국전산유체공학회지
    • /
    • 제3권1호
    • /
    • pp.73-81
    • /
    • 1998
  • The effect of vertical or horizontal throughflow on natural convection in horizontal porous layer was investigated. The computations were performed by employing Darcy-Brinkman-Forchheimer equation to consider the effect of inertia and viscous effect. The patterns of streamlines and isotherms are observed by changing the strength of throughflow. The vertical throughflow stabilizes the natural convection in porous layer. It also disturbs the developing vertical and horizontal velocity component of natural convection cell and increases the critical modified Rayleigh number. The horizontal throughflow influences the stabilization of natural convection in porous layer much more than the vertical throughflow. And it changes a stable convection into a oscillatory convection.

  • PDF

이동하는 물체 주위의 압축성 유동에 대한 가상경계법 (IMMERSED BOUNDARY METHOD FOR COMPRESSIBLE VISCOUS FLOW AROUND MOVING BODIES)

  • 조용
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2007년도 추계 학술대회논문집
    • /
    • pp.200-208
    • /
    • 2007
  • A methodology for the simulation of compressible high Reynolds number flow over rigid and moving bodies on a structured Cartesian grid is described in this paper. The approach is based on a modified version of the Brinkman Penalization method. To avoid oscillations in the vicinity of the body and to simulate shcok-containing flows, a Weighted Essentially Non-Oscillatory scheme is used to discretize the spatial flux derivatives. For high Reynolds number viscous flow, two turbulence models of the two-equation Menter's SST URANS model and a two-equation Detached Eddy Simulation are implemented. Some simple flow examples are given to assess the accuracy of the technique. Finally, a moving grid capability is demonstrated.

  • PDF

다공성 물질 안에서의 자연대류 현상에 대한 열역학적 국소평형상태 가정의 고찰 (An Investigation on Local Thermodynamic Equilibrium Assumption of Natural Convection in a Porous Medium)

  • 김인선;남진현;김찬중
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집B
    • /
    • pp.112-117
    • /
    • 2000
  • A numerical study on natural convection in a vertical square cavity filled with a porous medium is carried out with Brinkman-Forchheimer-extended Darcy flow model, and the validity of local thermodynamic equilibrium assumption is studied. The local thermodynamic equilibrium refers to the state in which a single temperature can be used to describe a heat transfer process in a multiphase system. With this assumption, the analysis is greatly simplified because only one equation is needed to describe the heat transfer process. But prior to using this assumption, it is necessary to know in what conditions the assumption can be used. The numerical results of this study reveal that large temperature difference between fluid phase and solid phase exists near wall region, paticularily when the convection becomes dominant over conduction. And the influence of flow parameters such as fluid Rayleigh number, fluid Prandtl number, dimensionless particle diameter and conductivity ratio are investigated.

  • PDF

LTNE 모델을 이용한 다공성 채널 입구영역에서의 열전달 특성 해석 (Analysis of Heat Transfer Characteristics in the Thermally Developing Region of a Porous Channel by LTNE Model)

  • 이상태;이관수;김서영
    • 대한기계학회논문집B
    • /
    • 제26권7호
    • /
    • pp.983-990
    • /
    • 2002
  • A numerical analysis has been carried out on forced convection heat transfer in the developing region of a porous channel. The channel is filled with an isotropic porous medium. At the channel walls, a uniform heat flux is given. Comprehensive numerical solutions are acquired to the Brinkman-Forchheimer extended Darcy equation and the LTNE model which does not employ the assumption of local thermal equilibrium between solid and fluid phases. Details of thermal fields in the developing region are examined over wide ranges of the thermal parameters. The numerical solutions at the fully developed region are compared with the previous analytical solutions. The correlation for predicting local Nusselt number in a porous channel is proposed.