Extended Graetz Problem Including Axial Conduction and Viscous Dissipation in Microtube

  • Jeong Ho-Eyoul (Department of Mechanical Engineering, Chonnam National University) ;
  • Jeong Jae-Tack (Department of Mechanical Engineering, Chonnam National University)
  • Published : 2006.01.01

Abstract

Extended Graetz problem in microtube is analyzed by using eigenfunction expansion to solve the energy equation. For the eigenvalue problem we applied the shooting method and Galerkin method. The hydrodynamically isothermal developed flow is assumed to enter the microtube with uniform temperature or uniform heat flux boundary condition. The effects of velocity and temperature jump boundary condition on the microtube wall, axial conduction and viscous dissipation are included. From the temperature field obtained, the local Nusselt number distributions on the tube wall are obtained as the dimensionless parameters (Peclet number, Knudsen number, Brinkman number) vary. The fully developed Nusselt number for each boundary condition is obtained also in terms of these parameters.

Keywords

References

  1. Ameel, T. A., Barron, R. F., Wang, X. and Warrington, R.O., 1997, 'Laminar Forced Convection in a Circular tube with Constant Heat Flux and Slip Flow,' Microscale Thermophys. Eng., Vol. 1(4), pp. 303-320 https://doi.org/10.1080/108939597200160
  2. Barron, R. F., Wang, X., Ameel, T. A. and Warrington, R.O., 1997, 'The Graetz Problem Extended to Slip-Flow,' Int. J. Heat Mass Transfer, Vol. 40(8), pp. 1817-1823 https://doi.org/10.1016/S0017-9310(96)00256-6
  3. Choi, S. B., Barron, R. F. and Warrington, R. O., 1991, 'Fluid Flow and Heat Transfer in Microtubes, In Micromechanical Sensors, Actuators, and System,' ASME DSC 32, pp. 123-134
  4. Graetz, L. and Uber die Warmeleitungsfa-higheit von Flussingkeiten, 1883, Annalen der Physik und Chemie part 1, Vol. 18, pp.79-94
  5. Graetz, L. and Uber die Warmeleitungsfa-higheit von Flussingkeiten, 1885, Annalen der Physik und Chemie part 2, Vol. 25, pp. 337-357
  6. Karniadakis, G. E. and Beskok, A., 2002, Micro flows Fundamentals and Simulation, Springer-Verlag, New York, pp. 45-53
  7. Lahjomri, J. and Oubarra, A., 1999, 'Analytical Solution of the Graetz Problem with Axial Conduction,' ASME J. Heat Transfer, Vol. 121, pp. 1078-1083 https://doi.org/10.1115/1.2826060
  8. Nield, D. A., Kuznetsov, A. V. and Xiong, M., 2003, 'Thermally Developing Forced Convection in a Porous Medium: Parallel Plate Channel with Walls at Uniform Temperature, with Axial Conduction and Viscous Dissipation Effects,' Int. J. Heat Mass Transfer, Vol. 46, pp.643-651 https://doi.org/10.1016/S0017-9310(02)00327-7
  9. Ou, J. W. and Cheng, K. C., 1974, 'Viscous Dissipation Effects on Thermal Entrance Heat Transfer in Laminar and Turbulent Pipe Flows with Uniform wall Temperature,' Am. Inst. Aeronaut. Astron., Pap.74-743 or Am. Soc. Mech. Eng., Pap. 74-HT-50
  10. Sellars, J. R., Tribus, M. and Klein, J. S., 1956, 'Heat Transfer to Laminar Flow in a Round Tube or Flat Conduit-the Graetz Problem Extended,' Trans. ASME, Vol. 78, pp.441-448
  11. Shah, R. K. and London, A. L., 1978, Laminar Flow Forced Convection in Ducts, Academic Press, New York, pp. 109-111
  12. Tuckerman, D. B. and Pease, R. F. W., 1981, 'High Performance Heat Sinking for VLSI, IEEE Electron Device Letters,' Vol. EDL-2 No. 5, pp. 126-129
  13. Tunc, G. and Bayazitoglu, Y., 2001, 'Heat Transfer in Microtubes with Viscous Dissipation,' Int. J. Heat Mass Transfer, Vol. 44, pp. 2395-2403 https://doi.org/10.1016/S0017-9310(00)00298-2