• Title/Summary/Keyword: Brine recycling

Search Result 12, Processing Time 0.021 seconds

Evaluation of Brine Recycling on Salting of Chinese Cabbage for Kimchi Preparation (김치용 배추 절임 염수의 재사용 가능성 평가)

  • 신동화;홍재식;오진아;안용선
    • Journal of Food Hygiene and Safety
    • /
    • v.15 no.1
    • /
    • pp.25-29
    • /
    • 2000
  • General composition and microbial load of brine recycled to 6 times for Chinese cabbage salting and the quality of Kimchi using every brined cabbage were investigated. The concentration of salt(NaCl) in brine after soaking dropped 1.35-2.49% and pH of the brine changed significantly until 4 times recycling. The acidities were increased as number of recycling increased. The total viable cell count in recycled brine increased from 1.58$\times$10$^{6}$ /mL in the first soaking brine to 2.3$\times$10$^{9}$ /mL in 4th soaking brine which was highest in number. The pure soluble solid and vitamin C content in brine were accumulated to 0.93% and 0.55 mg% respectively after 6th recycling. The pH, acidity and sensory evaluation results of Kimchi prepared by Chinese cabbage salted by each brine recycled 6 times showed no significant difference. It means there is a possiblity reusing brine for salting of cabbage for the preparation of Kimchi to 6 times.

  • PDF

Production of Yeast Cell Mass from Waste Brine and Cabbage Waste of Kimchi Factory (김치 공장의 절임 폐수 및 배추 쓰레기를 이용한 효모 배양)

  • Choi, Min-Ho;Park, Yun-Hee
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.4 no.2
    • /
    • pp.1-9
    • /
    • 1996
  • The possibility of using waste brine and cabbage waste from kimchi industry as raw materials for the production of yeast cell mass was investigated. Among four strains of osmotolerant yeast, Candida guilliermondii ATCC 6260 showed the best growth in the waste brine containing about 1.0g/L of reducing sugar and 7% to 12% of NaCl. The growth of C. guilliermondii in waste brine was affected slightly between the temperature range of $25^{\circ}C$ to $35^{\circ}C$ and the initial pH of 3 to 6. The NaCl concentration up to 9% was not inhibitory to the growth of C. guilliermondii and the addition of 10mM of ammonium salts or 5mM of potassium phosphate had no effect on the growth. The growth of yeast reduced BOD of the waste brine by 85% within 24hours. When C. guilliermondii was cultured in waste brine added with cabbage juice extracted from waste cabbage, the cell mass was increased significantly.

  • PDF

Study on the Precipitation of Magnesium Hydroxide from Brine (염수로부터 수산화마그네슘의 침전 특성 연구)

  • Seo, Bong Won;Song, Young-Jun;Lee, Gye Seung;Shin, Kang Ho;Jang, Yoon Ho;Kim, Youn-Che;Yoon, Si-Nae
    • Resources Recycling
    • /
    • v.23 no.3
    • /
    • pp.21-29
    • /
    • 2014
  • This study was conducted to obtain the basic data for designing the lithium recovery process from the "salar de Uyuni" in Bolivia. For this study, the mock brine which has the similar chemical composition with the brine of "salar de Uyuni" was prepared, and the effects of reaction factors such as temperature, time, pH and so forth on the precitation reaction of magnesium hydroxide were investigated.

A Study on the Behavior of Boron Extraction from Brine by Diol-type Extractant (Diol계(系) 추출제(抽出劑)에 의한 염수(鹽水) 중(中) 보론의 추출거동(抽出擧動) 연구(硏究))

  • Yoon, Mi-Hee;Kang, Dong-Jun;An, Jeon-Woong;Min, Dong-Joon
    • Resources Recycling
    • /
    • v.21 no.1
    • /
    • pp.41-48
    • /
    • 2012
  • A study on the behavior of boron extraction by TMPD(2,2,4-trimethyl-1,3-pentanediol) was carried out to find the optimum conditions for the boron extraction from brine. In case of boron extraction from 0.736 g/L boron-containing brine, typical optimum extractive conditions would be confirmed to be 0.75 mol/L of extractant concentration at 3.0 pH of brine with 1 of phase ratio and 20 min. of shaking time at 298 K respectively. And 1 mol/L sodium hydroxide of stripping agent was shown above 99 % of boron extraction and stripping efficiencies. Also, extraction equilibrium equation were obtained through experiments as follows : log D = 1.7 log $[TMPD]_O$ + constant at pH < 6.

Recent Trends and Future Perspectives of the Magnesium Recovery based on Electrolysis (전해 기반 마그네슘 회수 기술의 관련 동향 및 향후 전망)

  • Sang-hun Lee
    • Resources Recycling
    • /
    • v.33 no.2
    • /
    • pp.16-23
    • /
    • 2024
  • The electrolysis for extracting magnesium from seawater or brine primarily involves recovery of magnesium via precipitation as the form of magnesium hydroxide. The technology is classified into cation-exchange membranes (CEM), anion-exchange (AEM) membranes, electrodialysis, and membraneless methods. Recent research has focused on enhancing the efficiency and selectivity of magnesium recovery from seawater or brine containing magnesium, with expectations of effective magnesium recovery even with normal seawater. In a future, the optimization of the selective and efficient recovery of magnesium and various valuable substances through long-term operation of scaled-up systems is crucial with enhancing economic and environmental viability. It is essential to realistically estimate operational costs considering the membrane's lifespan and replacement cycle. Also, detailed and practical process models should be developed based on monitoring data on various factors.

Quality Characteristics of baechu Kimchi Salted with Recycled Wastebrine (재활용 절임수로 제조한 배추 김치의 특성)

  • 윤혜현;이숙영
    • Korean journal of food and cookery science
    • /
    • v.19 no.5
    • /
    • pp.609-615
    • /
    • 2003
  • In the Kimchi manufacturing industry, the process of brining baechu produces a vast amount of high salinity waste water. To study if this brine can be recycled, the quality characteristics of Kimchi salted by waste brine(F), which was used five times successively, was compared with those salted using water after recycling filtration through sand (F1) and activated carbon (F2) columns. No significant difference in the salinity and soluble solid contents, during fermentation at 10 was observed among the samples, but the salinity and soluble solid contents of the F-sample were slightly higher than in the control. The F1 and control Kimchi showed similar pHs and titratable acidities, while the F-Kimchi had a lower pH and a higher acidity during fermentation. The numbers of total viable cells were highest in the F, and lowest in the F2-Kimchi, while the counts of lactic acid bacteria were lowest in the F-Kimchi. The sensory tests for appearance, odor, taste and overall acceptance showed that the F-Kimchi was the least desirable, the F2-Kimchi had lower sour odor and taste, and a higher toughness, than the others. The F1- and control Kimchi had similar sensory grades for appearance, odor, and tastes, and there were no significant difference in the overall acceptance, showing the possibility of recycling wastewaters as brine for the production of baechu Kimchi.

Lithium - A Critical Metal for Clean Energy Technologies: A Comprehensive Review on Challenges and Opportunities for Securing Lithium from Primary and Secondary Resources (리튬-청정 에너지 기술의 핵심금속: 1차 및 2차 자원으로부터 리튬 확보를 위한 도전과 기회에 대한 종합적 고찰)

  • Swain, Basudev;Kim, Min-seuk;Lee, Chan-Gi;Chung, Kyeong Woo;Lee, Jae-chun
    • Resources Recycling
    • /
    • v.28 no.5
    • /
    • pp.3-18
    • /
    • 2019
  • Due to the increasing demand for clean energy, the consumption of lithium ion batteries (LIBs) is expected to grow steadily. Therefore, stable supply of lithium is becoming an important issue globally. Commercially, most of lithium is produced from the brine and minerals viz., spodumene, although various processes/technologies have been developed to recover lithium from other resources such as low grade ores, clays, seawaters and waste lithium ion batteries. In particular, commercialization of such recycling technologies for end-of-life LIBs being generated from various sources including mobile phones and electric vehicles(EVs), has a great potential. This review presents the commercial processes and also the emerging technologies for exploiting minerals and brines, besides that of newly developed lithium-recovery-processes for the waste LIBs. In addition, the future lithium-supply is discussed from the technical point of view. Amongst the emerging processes being developed for lithium recovery from low-grade ores, focus is mostly on the pyro-cum-hydrometallurgical based approaches, though only a few of such approaches have matured. Because of low recycling rate (<1%) of lithium globally compared to the consumption of lithium ion batteries (56% of lithium produced currently), processing of secondary resources could be foresighted as the grand opportunity. Considering the carbon economy, environment, and energy concerns, the hydrometallurgical process may potentially resolve the issue.

Recent Water Treatment Technology for Unconventional Natural Resource Development (비전통자원개발에 따른 수처리 최신 기술)

  • Kim, Geug Tae;Chung, Kun Yong;Park, Jung Kyu
    • Korean Chemical Engineering Research
    • /
    • v.52 no.2
    • /
    • pp.154-165
    • /
    • 2014
  • Development of unconventional natural resources such as shale gas, shale oil and coal bed methane, has been activated and improved the productivity due to the recent technology advance in horizontal drilling and hydraulic fracturing. However, the flowback water mixed with chemical additives, and the brine water containing oil, gas, high levels of salts and radioactive metals is produced during the gas production. Potential negative environmental impact due to large volumes of the produced wastewater is increasingly seen as the major obstacles to the unconventional natural resource development. In this study an integrated framework for the flowback and brine water treatment is proposed, and we reviewed the upcoming state of the art technology in water treatment. Basic separation processes which include not only membrane, evaporation, crystallization and desalination processes, but the potential water reuse and recycling techniques can be applied for the unconventional natural resource industry.

Alkali Recovery by Electrodialysis Process: A Review (전기투석 공정에 의한 알칼리 회수: 총설)

  • Sarsenbek Assel;Rajkumar Patel
    • Membrane Journal
    • /
    • v.33 no.3
    • /
    • pp.87-93
    • /
    • 2023
  • Electrodialysis (ED) is essential in separating ions through an ion exchange membrane. The disposal of brine generated from seawater desalination is a primary environmental concern, and its recycling through membrane separation technology is highly efficient. Alkali is produced by several chemical industries such as leather, electroplating, dyeing, and smelting, etc. A high concentration of alkali in the waste needs treatment before releasing into the environment as it is highly corrosive and has a chemical oxygen demand (COD) value. The concentration of calcium and magnesium is almost double in brine and is the perfect candidate for carbon dioxide adsorption, a major environmental pollutant. Sodium hydroxide is essential for the metal carbonation process which, is easily produced by the bipolar membrane electrodialysis process. Various strategies are available for its recovery, like reverse osmosis (RO), nanofiltration (NF), ultrafiltration (UF), and ED. This review discusses the ED process by ion exchange membrane for alkali recovery are discussed.

Development and Commercialization of Artificial Reefs from Waste Mulch Plastic Films (농업용(農業用) 멀칭 폐(廢)비닐로부터 인공어초(人工魚礁) 개발(開發) 및 상용화(商用化))

  • Kim, Hea-Tae;Shon, Sang-Jin;Kim, Myoung-Ho;Choi, Mi-Ran;Baek, Wook-Jin
    • Resources Recycling
    • /
    • v.16 no.5
    • /
    • pp.19-24
    • /
    • 2007
  • Reefs are the marine structure that can give resting, inhabiting, feeding and nursing spaces for a variety of fishes. Usually artificial reefs are made of cement and steels respectively in Japan as well as in Korea. However since resources deficiency has been getting serious, other materials are taken into consideration for the basic bodies of artificial reefs. About 300 thousand tons of waste agricultural plastic films are generated every yew in Korea, but no effective recycling techniques have been developed. In this sense, artificial reefs made of waste agricultural plastic films are the most representative symbol of the recycled products in the Resource Recycling Era. In particular, since these reefs could be made of the semi-cleaned waste agricultural plastic films that still contain high portion of soil, it is very environmentally friendly not only in manufacturing process but also in using under water. Furthermore they have some evident advantages as follows; 1) high fish swarming effect 2) good initial attachment of the marine growths 3) extremely low corrosion to brine 4) easy adjustment of the gravity 5) economical manufacture, transportation and jettison 6) excellent safety to ecosystem caused by lower elution of toxic substances 7) good recyclable property after application and so on.