• 제목/요약/키워드: Bridge light

검색결과 242건 처리시간 0.025초

경량전철 민간투자사업의 시스템엔지니어링 연구 (A Study on System Engineering of Light Rail Transit Private Investment Projects)

  • 차기호;박진재;이재형;추동수
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2011년도 정기총회 및 추계학술대회 논문집
    • /
    • pp.517-544
    • /
    • 2011
  • Promote competition in local government and the construction of a subway construction in the vicious cycle of debt due to the operating deficit as a greater burden on local finances was leave. This government policy of public transport in the center of the metro construction costs affordable and to respond appropriately to public transport demand new transit LRT(Light rail Transit) by introducing the current Busan was the opening of Line 4, yongin line, Busan - Gimhae line, parliamentary and barge construction or ready for the opening. What is light rail, compared to the existing subway and cheaper construction cost, the existing road or bridge that runs along the track is installed, etc. Manless system construction cost and operating expenses as a possible new railway transportation has been a leading state-of-the-art mad. However, the domestic business system engineering of light rail-related companies in the developed countries are doing to advance to the national to the local engineering skills of the self-free, hurry will have to be secured. Therefore, this paper applies local light rail project on the status of the systems engineering analysis and based on this source of the latest engineering technology-intensive systems engineering to provide direction to the development of technology.

  • PDF

A STUDY ON THE LIFE CYCLE COST ANALYSIS IN LIGHT RAIL TRANSIT BRIDGES: FOCUSED ON SUPERSTRUCTURE

  • Lee Du-heon;Kim Kyoon-tai;Kim Hyun Bae;Jun Jin-taek;Han Choong-hee
    • 국제학술발표논문집
    • /
    • The 2th International Conference on Construction Engineering and Project Management
    • /
    • pp.30-40
    • /
    • 2007
  • The demand for light-rail construction projects has recently been increasing, and they are mostly supervised by private construction companies. Therefore, a private construction company that aim to raise gains from the operation of the facilities during the contract period greater than what they invested should b able to accurately calculate the costs from the aspect of Life Cycle Cost (LCC). In particular, a light-rail transit bridge that has a heavier portion from the aspect of the cost of light-rail transit construction requires a more accurate calculation method than the conventional LCC calculation method. For this, an LCC analysis model was developed and a cost breakdown structure was suggested based on literature review. The construction costs by shape of the upper part of a light-rail transit were calculated based on the cost breakdown system presented in this paper, and the cost generation cycle and cost unit price were collected and analyzed based on records on maintenance costs, rehabilitation and replacement. In addition, after forming some hypotheses in order to perform the LCC analysis, economic evaluation was conducted from the aspect of the LCC by using performance data by item.

  • PDF

교량검사 굴절로봇 작업붐의 진동제어 (Vibration Control of Working Booms on Articulated Bridge Inspection Robots)

  • 황인호;이후석;이종세
    • 한국전산구조공학회논문집
    • /
    • 제21권5호
    • /
    • pp.421-427
    • /
    • 2008
  • BIRDI(Bridge Inspection Robot Development Inter)ace)에서 현재 개발된 첨단굴절로봇차는 기존의 굴절차에 비해 소형이며, 12m에 이르는 작업붐으로 인해 교량의 진동, 풍하중 등에 의해 쉽게 진동이 발생할 것으로 예상된다. 본 연구에서는 첨단굴절로봇차의 머신비전 시스템을 통한 점검 성능 확보를 위해 작업붐에 엑츄에이터를 장착하여 유해 진동을 제어할 수 있는 시스템을 제안하였으며, 성능 평가를 위해 수치적, 실험적 연구를 수행하였다. 제안된 제어시스템의 수치적 연구를 위해 현재 제작된 작업붐의 제원을 이용하여 모델링하였고, 적당한 주파수 특성을 가진 하중을 가정하였으며, 최적 제어이론인 LQ 조정기를 설계하였다. 수치해석 결과, 제안된 제어시스템은 작업붐에 발생되는 유해 진동을 저감시킬 수 있었다. 실험적 연구를 위해 작업붐의 축소 모형을 제작하였고 제어시스템을 구축하였다. 또한 실험결과 작업붐의 진동을 짧은 시간에 제어하는 우수한 성능을 보였다. 본 연구를 통해 제안된 시스템의 진동제어 성능을 입증하였으며, 실제 첨단굴절로봇차에 적용될 경우 점검 시스템의 성능을 향상시킬 수 있을 것으로 사료된다.

Displacement-based design approach for highway bridges with SMA isolators

  • Liu, Jin-Long;Zhu, Songye;Xu, You-Lin;Zhang, Yunfeng
    • Smart Structures and Systems
    • /
    • 제8권2호
    • /
    • pp.173-190
    • /
    • 2011
  • As a practical and effective seismic resisting technology, the base isolation system has seen extensive applications in buildings and bridges. However, a few problems associated with conventional lead-rubber bearings have been identified after historical strong earthquakes, e.g., excessive permanent deformations of bearings and potential unseating of bridge decks. Recently the applications of shape memory alloys (SMA) have received growing interest in the area of seismic response mitigation. As a result, a variety of SMA-based base isolators have been developed. These novel isolators often lead to minimal permanent deformations due to the self-centering feature of SMA materials. However, a rational design approach is still missing because of the fact that conventional design method cannot be directly applied to these novel devices. In light of this limitation, a displacement-based design approach for highway bridges with SMA isolators is proposed in this paper. Nonlinear response spectra, derived from typical hysteretic models for SMA, are employed in the design procedure. SMA isolators and bridge piers are designed according to the prescribed performance objectives. A prototype reinforced concrete (RC) highway bridge is designed using the proposed design approach. Nonlinear dynamic analyses for different seismic intensity levels are carried out using a computer program called "OpenSees". The efficacy of the displacement-based design approach is validated by numerical simulations. Results indicate that a properly designed RC highway bridge with novel SMA isolators may achieve minor damage and minimal residual deformations under frequent and rare earthquakes. Nonlinear static analysis is also carried out to investigate the failure mechanism and the self-centering ability of the designed highway bridge.

LED 조명장치 구동용 200[W]급 하프브리지 LLC 직렬공진형 컨버터 (200[W] Half-Bridge LLC Series Resonant Converter for driving LED Lamp)

  • 한우용;박효식
    • 한국산학기술학회논문지
    • /
    • 제11권11호
    • /
    • pp.4483-4488
    • /
    • 2010
  • LED는 다른 광원에 비해 동작수명이 길고, 친환경적이며, 에너지 효율이 높은 장점을 가지고 있다. 최근 LED 기술의 발전으로 인해 고휘도, 고용량의 LED가 개발됨에 따라, 표시장치에만 적용되던 LED를 조명장치에도 적용하는 기술이 확산되고 있다. 파워 LED는 동작의 안정성 및 신뢰성을 확보하기 위해 구동전류를 일정한 값 이하로 유지하는 전류제한기능이 필요한데, 본 논문에서는 전류제한기능을 포함한 하프브리지 LLC 직렬공진형 컨버터를 제안한다. 하프브리지 LLC 직렬공진형 컨버터는 다른 공진형 컨버터에 비해 상대적으로 입력전압 및 출력부하 범위가 광범위한 장점이 있으며, 변압기의 누설인덕턴스를 공진인덕터로 이용할 수 있기 때문에 마그네틱 소자를 줄일 수 있는 장점이 있다. 전류제한기능 및 역률개선기능을 포함하고 있는 출력전압 DC24[V], 200[W]급의 LED 조명장치 구동용 하프브리지 LLC 직렬공진형 컨버터의 설계 및 실험을 통해 타당성을 입증하였다.

폼 충전 FRP 바닥판의 약축방향 정적거동 특성에 관한 실험적 연구 (An Experimental Study on the Static Behavior in Weak Axis of FRP Bridge Deck Filled with a Foam)

  • 김병민;지광습;황윤국;이영호
    • 대한토목학회논문집
    • /
    • 제26권6A호
    • /
    • pp.943-953
    • /
    • 2006
  • 본 연구에서는 섬유강화 플라스틱(FRP) 소재로 제작된 사각형 중공 교량 바닥판의 약축방향 거동을 보완하기 위해서 바닥판의 중공 내부를 구조용 폼(foam)으로 충전하였다. 충전폼의 유무와 폼의 강도에 따른 약축방향 정적거동 특성을 실험적으로 분석하여 충전폼의 역할을 검토하였다. FRP에 비하여 탄성계수가 현저히 낮은 구조용 폼으로 바닥판 내부를 충전하여 도 본래의 경량성을 유지하면서 공칭강도, 강성 등의 횡방향 구조성능이 획기적으로 개선되었다. 웨브의 개수에 따른 파괴거동을 비교하여 내부충전 FRP 바닥판에서 웨브의 역할을 파악하였다. 웨브가 내부충전 FRP 바닥판의 약축방향 강도에 미치는 영향은 미미하였으나, 폼 내부에서 발생한 균열의 전파를 차단함으로써 파괴모드의 취성을 경감시켰다.

Temperature distribution behaviors of GFRP honeycomb hollow section sandwich panels

  • Kong, B.;Cai, C.S.;Pan, F.
    • Structural Engineering and Mechanics
    • /
    • 제47권5호
    • /
    • pp.623-641
    • /
    • 2013
  • The fiber-reinforced polymer (FRP) composite panel, with the benefits of light weight, high strength, good corrosion resistance, and long-term durability, has been considered as one of the prosperous alternatives for structural retrofits and replacements. Although with these advantages, a further application of FRPs in bridge engineering may be restricted, and that is partly due to some unsatisfied thermal performance observed in recent studies. In this regard, Kansas Department of Transportation (DOT) conducted a field monitoring program on a bridge with glass FRP (GFRP) honeycomb hollow section sandwich panels. The temperatures of the panel surfaces and ambient air were measured from December 2002 to July 2004. In this paper, the temperature distributing behaviors of the panels are firstly demonstrated and discussed based on the field measurements. Then, a numerical modeling procedure of temperature fields is developed and verified. This model is capable of predicting the temperature distributions with the local environmental conditions and material's thermal properties. Finally, a parametric study is employed to examine the sensitivities of several temperature influencing factors, including the hollow section configurations, environmental conditions, and material properties.

벌크헤드 플레이트로 보강된 강바닥판교의 종리브-횡리브 교차연결부의 최적상세 연구 (A Study for The Optimal Detail on Intersectin of Longitudinal-Transversal Rib in Orthotropic Steel Deck Bridge, Bulkhead Plate Reinforced.)

  • 공병승;윤성운
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2004년도 봄 학술발표회 논문집
    • /
    • pp.177-184
    • /
    • 2004
  • Orthotropic steel deck bridge has much advantages such as the light deadweight, so the construction of orthotropic steel deck is profitable for the long-span bridges Although the system has a lot of merits, it happens some damages by the traffic density and the fatigue cracks of welding. The cross-connection of longitudinal rib and transversal rib is one of the weakest at the fatigue. The secondary stresses which are from the out-plane deformation of transversal rib and the torsion of longitudinal rib make the topical stress concentration phenomenon. The Bulkhead Plate for prevention of this stress concentration phenomenon was applied by changing the orthotropic steel deck of Williamsburg bridge in USA. But, it is principle that a Bulkhead Plate is not established in the domestic design standard. Therefore, it is estimated that the study for installation of Bulkhead Plate is needed. This study with considering these circumstances proves efficiency of Bulkhead Plate and will be presented optimal design details through finite element analysis according to change the geometrical of Bulkhead Plate and the cross-connection area of longitudinal and transversal rib

  • PDF

80 MPa급 고강도 콘크리트를 활용한 2거더교 RC 장지간 바닥판의 최소두께 (Minimum Thickness of Long-Span RC Deck Slabs for 2-girder Bridges Designed by 80 MPa Concrete)

  • 배재현;유동민;황훈희;김성태
    • 한국안전학회지
    • /
    • 제29권5호
    • /
    • pp.97-103
    • /
    • 2014
  • To ensure durability and light weight of bridges, high-strength concrete is required for long-span deck slabs. Such a technology eventually extends the life of bridges and improves the economic efficiency. The results of this study suggests a formula for calculating the minimum thickness of long-span deck slabs built with high strength concrete. The minimum thickness is proposed based on the limit states indicated in the CEB-FIP Model Code and the Korean Highway Bridge Design Code(limit state design). The design compressive strength of concrete used for the study is 80MPa. Moreover, the required thickness for satisfying the flexural capacity and limiting deflection is estimated considering the limit state load combination. The formula for minimum thickness of deck slabs is proposed considering the ultimate limit state(ULS) and the serviceability limit state(SLS) of bridges, and by comparing the Korean Highway Bridge Design Code and similar previous studies. According to the research finding, the minimum thickness of long-span deck slab is more influenced by deflection limit than flexural capacity.

Design strategy of hybrid stay cable system using CFRP and steel materials

  • Xiong, Wen;Cai, C.S.;Xiao, Rucheng;Zhang, Yin
    • Steel and Composite Structures
    • /
    • 제13권1호
    • /
    • pp.47-70
    • /
    • 2012
  • To enhance cable stiffness, this paper proposed a combined application of carbon fiber reinforced polymers (CFRP) and steel materials, resulting in a novel type of hybrid stay cable system especially for the cable-stayed bridges with main span lengths of 1400~2800 m. In this combination, CFRP materials can conserve all their advantages such as light weight and high strength; while steel materials help increase the equivalent stiffness to compensate for the low elastic modulus of CFRP materials. An increase of the equivalent stiffness of the hybrid stay cable system could be further obtained with a reasonable increase of its safety factor. Following this concept, a series of parametric studies for the hybrid stay cable system with the consideration of stiffness and cost were carried out. Three design strategies/criteria, namely, best equivalent stiffness with a given safety factor, highest ratio of equivalent stiffness to material cost with a given safety factor, and best equivalent stiffness under a given cost were proposed from the stiffness and cost viewpoints. Finally, a comprehensive design procedure following the proposed design strategies was suggested. It was shown that the proposed hybrid stay cable system could be a good alternative to the pure CFRP or traditional steel stay cables in the future applications of super long span bridges.