• Title/Summary/Keyword: Bridge Node

Search Result 81, Processing Time 0.023 seconds

Bridge load testing and rating: a case study through wireless sensing technology

  • Shoukry, Samir N.;Luo, Yan;Riad, Mourad Y.;William, Gergis W.
    • Smart Structures and Systems
    • /
    • v.12 no.6
    • /
    • pp.661-678
    • /
    • 2013
  • In this paper, a wireless sensing system for structural field evaluation and rating of bridges is presented. The system uses a wireless platform integrated with traditional analogue sensors including strain gages and accelerometers along with the operating software. A wireless vehicle position indicator is developed using a tri-axial accelerometer node that is mounted on the test vehicle, and was used for identifying the moving truck position during load testing. The developed software is capable of calculating the theoretical bridge rating factors based on AASHTO Load and Resistance Factor Rating specifications, and automatically produces the field adjustment factor through load testing data. The sensing system along with its application in bridge deck rating was successfully demonstrated on the Evansville Bridge in West Virginia. A finite element model was conducted for the test bridge, and was used to calculate the load distribution factors of the bridge deck after verifying its results using field data. A confirmation field test was conducted on the same bridge and its results varied by only 3% from the first test. The proposed wireless sensing system proved to be a reliable tool that overcomes multiple drawbacks of conventional wired sensing platforms designed for structural load evaluation of bridges.

Design of wireless sensor network and its application for structural health monitoring of cable-stayed bridge

  • Lin, H.R.;Chen, C.S.;Chen, P.Y.;Tsai, F.J.;Huang, J.D.;Li, J.F.;Lin, C.T.;Wu, W.J.
    • Smart Structures and Systems
    • /
    • v.6 no.8
    • /
    • pp.939-951
    • /
    • 2010
  • A low-cost wireless sensor network (WSN) solution with highly expandable super and simple nodes was developed. The super node was designed as a sensing unit as well as a receiving terminal with low energy consumption. The simple node was designed to serve as a cheaper alternative for large-scale deployment. A 12-bit ADC inputs and DAC outputs were reserved for sensor boards to ease the sensing integration. Vibration and thermal field tests of the Chi-Lu Bridge were conducted to evaluate the WSN's performance. Integral acceleration, temperature and tilt sensing modules were constructed to simplify the task of long-term environmental monitoring on this bridge, while a star topology was used to avoid collisions and reduce power consumption. We showed that, given sufficient power and additional power amplifier, the WSN can successfully be active for more than 7 days and satisfy the half bridge 120-meter transmission requirement. The time and frequency responses of cables shocked by external force and temperature variations around cables in one day were recorded and analyzed. Finally, guidelines on power characterization of the WSN platform and selection of acceleration sensors for structural health monitoring applications were given.

Development of a low-cost multifunctional wireless impedance sensor node

  • Min, Jiyoung;Park, Seunghee;Yun, Chung-Bang;Song, Byunghun
    • Smart Structures and Systems
    • /
    • v.6 no.5_6
    • /
    • pp.689-709
    • /
    • 2010
  • In this paper, a low cost, low power but multifunctional wireless sensor node is presented for the impedance-based SHM using piezoelectric sensors. Firstly, a miniaturized impedance measuring chip device is utilized for low cost and low power structural excitation/sensing. Then, structural damage detection/sensor self-diagnosis algorithms are embedded on the on-board microcontroller. This sensor node uses the power harvested from the solar energy to measure and analyze the impedance data. Simultaneously it monitors temperature on the structure near the piezoelectric sensor and battery power consumption. The wireless sensor node is based on the TinyOS platform for operation, and users can take MATLAB$^{(R)}$ interface for the control of the sensor node through serial communication. In order to validate the performance of this multifunctional wireless impedance sensor node, a series of experimental studies have been carried out for detecting loose bolts and crack damages on lab-scale steel structural members as well as on real steel bridge and building structures. It has been found that the proposed sensor nodes can be effectively used for local wireless health monitoring of structural components and for constructing a low-cost and multifunctional SHM system as "place and forget" wireless sensors.

Numerical simulation of the constructive steps of a cable-stayed bridge using ANSYS

  • Lazzari, Paula M.;Filho, Americo Campos;Lazzari, Bruna M.;Pacheco, Alexandre R.;Gomes, Renan R.S.
    • Structural Engineering and Mechanics
    • /
    • v.69 no.3
    • /
    • pp.269-281
    • /
    • 2019
  • This work addresses a three-dimensional nonlinear structural analysis of the constructive phases of a cable-stayed segmental concrete bridge using The Finite Element Method through ANSYS, version 14.5. New subroutines have been added to ANSYS via its UPF customization tool to implement viscoelastoplastic constitutive equations with cracking capability to model concrete's structural behavior. This numerical implementation allowed the use of three-dimensional twenty-node quadratic elements (SOLID186) with the Element-Embedded Rebar model option (REINF264), conducting to a fast and efficient solution. These advantages are of fundamental importance when large structures, such as bridges, are modeled, since an increasing number of finite elements is demanded. After validating the subroutines, the bridge located in Rio de Janeiro, Brazil, and known as "Ponte do Saber" (Bridge of Knowledge, in Portuguese), has been numerically modeled, simulating each of the constructive phases of the bridge. Additionally, the data obtained numerically is compared with the field data collected from monitoring conducted during the construction of the bridge, showing good agreement.

Wireless Impedance Sensor with PZT-Interface for Prestress-Loss Monitoring in Prestressed Concrete Girder

  • Nguyen, Khac-Duy;Lee, So-Young;Kim, Jeong-Tae
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.31 no.6
    • /
    • pp.616-625
    • /
    • 2011
  • Ensuring the designed prestress force is very important for the safety of prestressed concrete bridge. The loss of prestress force in tendon could significantly reduce load carrying capacity of the structure. In this study, an automated prestress-loss monitoring system for prestressed concrete girder using PZT-interface and wireless impedance sensor node is presented. The following approaches are carried out to achieve the objective. Firstly, wireless impedance sensor nodes are designed for automated impedance-based monitoring technique. The sensor node is mounted on the high-performance Imote2 sensor platform to fulfill high operating speed, low power requirement and large storage memory. Secondly, a smart PZT-interface designed for monitoring prestress force is described. A linear regression model is established to predict prestress-loss. Finally, a system of the PZT-interface interacted with the wireless sensor node is evaluated from a lab-scale tendon-anchorage connection of a prestressed concrete girder.

Performance Evaluation of the WDM Ring Network Based on Photonic Slot Routing (광-슬롯 경로 배정 방식을 기반으로 한 WDM 링의 성능 평가)

  • 한상현;이호숙;소원호;은지숙;김영천
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.154-157
    • /
    • 1999
  • Photonic Slot Routing(PSR) is a promising approach to solve the fundamental scalability problem of all-optical packet switched WDM networks. In photonic slot routing, packets destined for the same subnetwork are aggregated to form a photonic slot which is jointly routed as a single unit of information through the network. The relative location of the nodes from bridge may cause to fairness problem in the unidirectional WDM ring network based on PSR. As photonic slots from different subnetworks can originate contentions at the bridge, packets may be dropped and retransmitted. Thus we evaluated the performance of PSR based WDM ring network in the point of fairness for each node and slot contentions at the bridge. Simulation results show that the PSR based WDM ring requires a slot access mechanism to guarantee the transmission fairness and efficient switch architecture to resolve slot contention at the bridge.

  • PDF

A Bluetooth Scatternet Reformation Algorithm

  • Lee Han-Wook;Kauh Sang-Ken
    • Journal of Communications and Networks
    • /
    • v.8 no.1
    • /
    • pp.59-69
    • /
    • 2006
  • Bluetooth is reputed as a wireless networking technology supplying ad-hoc networks between digital devices. In particular, Bluetooth scatternet is an essential part of dynamic ad-hoc networks. Yet, there have not been sufficient researches performed on scatternet environment. This paper proposes a scatternet reformation algorithm for ad-hoc networks for instances where some nodes enter or leave the scatternet. The proposed algorithm is a general algorithm that can be applied to many types of Bluetooth scatternet regardless of the topology. The proposed algorithm is made for two reformation cases, i.e., nodes leaving and nodes entering. For the reformation when nodes leave a scatternet, the recovery node vector (RNV) algorithm is proposed. It has short reformation setup delay because the process involves a single page process (not including inquiry process). For the reformation when nodes enter a scatternet, the entry node algorithm is proposed. This is a simple and easily implementable algorithm. In this paper, real hardware experiments are carried out to evaluate the algorithm's performance where the reformation setup delay, the reformation setup probability and the data transfer rate are measured. The proposed algorithm has shown improvement in the reformation setup delay and probability.

Bridge Wireless Measurement System Development based on LoRa IoT (LoRa IoT 기반의 교량 무선 자동계측 시스템 개발)

  • Park, Jin-o;Park, Sang-Heon;An, Sung-Ju;Park, Won-Joo;Kim, Jong-Hoon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.7
    • /
    • pp.164-171
    • /
    • 2019
  • Focusing on the bridge facilities, which occupy the largest proportion among SOC public facilities in Korea, it is possible to reduce the cost compared to existing wired measurement systems or wireless measurement systems developed by domestic telecommunications companies, and to increase the technical perfection to be applied to many bridges. We developed a wireless measurement system for bridges. Using LoRa, one of the unlicensed LPWAN technologies, we have developed an optimized MEMS-based LoRa smart sensor node considering the domestic ISM band and the existing wired sensor LoRa DAQ sensor node that can communicate with the LoRa network. Application server was developed for the test bed performance verification and efficient management of the developed sensor node.

Bridge Road Surface Frost Prediction and Monitoring System (교량구간의 결빙 예측 및 감지 시스템)

  • Sin, Geon-Hun;Song, Young-Jun;You, Young-Gap
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.11
    • /
    • pp.42-48
    • /
    • 2011
  • This paper presents a bridge road surface frost prediction and monitoring system. The node sensing hardware comprises microprocessor, temperature sensors, humidity sensors and Zigbee wireless communication. A software interface is implemented the control center to monitor and acquire the temperature and humidity data of bridge road surface. A bridge road surface frost occurs when the bridge deck temperature drops below the dew point and the freezing point. Measurement data was used for prediction of road surface frost occurrences. The actual alert is performed at least 30 minutes in advance the road surface frost. The road surface frost occurrences data are sent to nearby drivers for traffic accidents prevention purposes.

A Study on Intelligent Edge Computing Network Technology for Road Danger Context Aware and Notification

  • Oh, Am-Suk
    • Journal of information and communication convergence engineering
    • /
    • v.18 no.3
    • /
    • pp.183-187
    • /
    • 2020
  • The general Wi-Fi network connection structure is that a number of IoT (Internet of Things) sensor nodes are directly connected to one AP (Access Point) node. In this structure, the range of the network that can be established within the specified specifications such as the range of signal strength (RSSI) to which the AP node can connect and the maximum connection capacity is limited. To overcome these limitations, multiple middleware bridge technologies for dynamic scalability and load balancing were studied. However, these network expansion technologies have difficulties in terms of the rules and conditions of AP nodes installed during the initial network deployment phase In this paper, an intelligent edge computing IoT device is developed for constructing an intelligent autonomous cluster edge computing network and applying it to real-time road danger context aware and notification system through an intelligent risk situation recognition algorithm.