JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 8, NO. I, MARCH 2006

59

A Bluetooth Scatternet Reformation Algorithm

Han-Wook Lee and Sang Ken Kauh

Abstract: Bluetooth is reputed as a wireless networking technol-
ogy supplying ad-hoc networks between digital devices. In particu-
lar, Bluetooth scatternet is an essential part of dynamic ad-hoc net-
works. Yet, there have not been sufficient researches performed on
scatternet environment. This paper proposes a scatternet reforma-
tion algorithm for ad-hoc networks for instances where some nodes
enter or leave the scatternet. The proposed algorithm is a general
algorithm that can be applied to many types of Bluetooth scatter-
net regardless of the topology. The proposed algorithm is made
for two reformation cases, i.e., nodes leaving and nodes entering.
For the reformation when nodes leave a scatternet, the recovery
node vector (RNV) algorithm is proposed. It has short reformation
setup delay because the process involves a single page process (not
inchiding inquiry process). For the reformation when nodes enter
a scatternet, the entry node algorithm is proposed. This is a sim-
ple and easily implementable algorithm. In this paper, real hard-
ware experiments are carried out to evaluate the algorithm’s per-
formance where the reformation setup delay, the reformation setup
probability and the data transfer rate are measured. The proposed
algorithm has shown improvement in the reformation setup delay
and probability.

Index Terms: Ad-hoc network, Bluetooth, bridge, entry node, node
matrix, node weight, recovery node vector, reformation, scatternet.

I. INTRODUCTION

Bluetooth has been reputed as a promising wireless network-
ing technology supplying ad-hoc networks between digital de-
vices such as cellular phone, PDA, notebook, desktop, etc. Blue-
tooth supports two types of networks, namely piconet and scat-
ternet. A scatternet can form fully distributed ad-hoc networks
and can be applied to scalable and flexible networks between
digital devices. However, a scatternet has not been clearly de-
scribed in Bluetooth specification [1], [2]. This topic has been
a major topic of discussion among researches in relation to the
formation algorithm, scheduling scheme, etc.

In past researches on scatternet formation, only static envi-
ronment where nodes neither enter nor leave the network was
considered [31-[9]. In order for Bluetooth to be applied to dy-
namic networks such as PAN, a reformation algorithm is needed
to deal with instances where some nodes enter or leave the net-
work.

In this paper, a general Bluetooth scatternet reformation algo-
rithm which can be applied to most types of scatternet regardless
of the topology is proposed. The algorithm can be applied for
network reformation after some nodes leave or enter the scat-

Manuscript received October 25, 2004; approved for publication by Ekram
Hossain, Division II Editor, June 29, 2005.

The authors are with the School of Mechanical and Aerospace Engineer-
ing, Seoul National University, Seoul, Korea, email: ezuinos@paran.com,
kauh @snu.ac kr.

ternet, and can retain the scatternet topology even after the ref-
ormation process. The proposed reformation algorithm is made
for two reformation cases, i.e., nodes leaving and entering.

The reformation algorithm when a node leaves a scatternet is
based on recovery node vector (RNV) which is composed of re-
covery master (RM) and recovery slave (RS), and hence given
the name recovery node vector algorithm. The RM and RS are
normally designated based on the neighboring node information
which is exchanged after a connection process. As the reforma-
tion process is composed of only page process, the reformation
setup delay can be minimized.

The reformation algorithm when a node enters a scatternet is
called entry node algorithm. An entry node plays the role of
offering new nodes the entrance to the scatternet. This means
that a new node can only enter the scatternet via this entry node.
This algorithm is simple and can be easily implemented in a
Bluetooth system.

The proposed reformation algorithm, which is implemented
in commercial Bluetooth hardware, has many practical uses. To
evaluate the performance of the proposed algorithm, we con-
ducted real hardware experiments. In these experiments, the
reformation setup delay, the reformation setup probability and
the data transfer rate were measured.

In this paper, we present some related works in Section II and
then, present the basic parameters related to scatternet and clas-
sify the node types in a scatternet in Section III. Next, we will
describe the details of the proposed reformation algorithm in
Section IV and analyze the performance of the algorithm based
on the results of real hardware experiments in Section V. Finally,
we will present our conclusions in Section VI.

II. RELATED WORKS

Scatternet topology can be classified into the following types
such as tree [5], [10]-[12], star [7], ring [6], [13], [14], and
mesh [8], [9]. Each type of scatternet topology has its pros
and cons. The performance comparison of various scatternet
topology has been reported in past researches [15], but most of
these researches started their research from the assumption that
no node enters or leaves the scatternet, or did not consider the
aspect of the reformation process after these nodes enter or leave
the scatternet [3]-{9].

Only a few researches have been reported dealing with the ref-
ormation process. Among these researches, only the possibility
of reformation algorithm was shown in [14]. In [10] and [11],
a reformation algorithm based on node types such as master,
slave and bridge was referred to briefly. In [12], the possibility
that healing function in the protocol can be applied to dynamic
networks was shown. In [13], the reformation algorithm in the
case where some nodes in the scatternet leave was described in
more detail. This algorithm was operated by inquiry process
using DIAC [1], [2]. It has an advantage in that it is easy to im-

1229-2370/06/$10.00 © 2006 KICS

60

plement. However, the algorithm faces a long reformation setup
delay due to the inquiry duration. In addition, it is possible that
if two nodes in the scatternet leave the networks simultaneously,
the reformation could be conducted incorrectly.

III. NODE CLASSIFICATION IN THE SCATTERNET

The proposed algorithm is operated based on node types. In
this paper, node matrix and node weight are introduced for the
quantitative classification.

A. Basic Parameters of Scatternet

Bluetooth scatternet is composed of a set of piconets. A pi-
conet is a small size network which has up to 7 slave nodes
per 1 master node. Master synchronizes TDD time slots and
frequency hopping channels with slave nodes, and manages the
status of the nodes and links [1], [2]. If a node X is master in
a piconet, the piconet is represented as Pico(X), which is a set
of slave nodes in the piconet. In Fig. 1, there are three piconets
and each piconet is represented as follows.

Pico(A)={B, C}, Pico(D)={C, E}, Pico(E)={F,G,H}.

If the number of slave nodes in a piconet can be repre-
sented as |Pico(X)|, the following relation can be obtained.
| Pico(X)| < Smax Where Spyay is the maximum number of slave
nodes in a piconet and which can go up to 7 [1], [2]. For this
research, s,,.x was set to 6.

If a scatternet is composed of 7 piconets whose master nodes

are My, M, - -, M, the scatternet can be represented as fol-
lows.
Scat(Ml, Mg, cey .Z\/[n)

= {Pico(M,), Pico(Ms), - - -, Pico(M,)}.

The scatternet in Fig. 1 is described in the following manner.

Scat(A, D, E) = {Pico(A), Pico(D), Pico(E)}.

We introduce scatternet dimension which means the number of
piconet in a scatternet, and express it as dscqz.

l=n

In order for a few piconets to try to form a scatternet, some
interface nodes between the piconets are needed. The interface
nodes are called bridges. In general, a bridge node belongs to
two piconets, and has two simultaneous roles. If a bridge is
operated as master in one piconet and as slave in the other pi-
conet at the same time, the bridge is named master-slave bridge
(MS-bridge). Similarly, if a bridge has two slave roles for two
piconets, the bridge is named slave-slave bridge (SS-bridge).

If a bridge node between Pico(X) and Pico(Y) is repre-
sented as Bridge(X,Y), the following relation is obtained.

({X} U Pico(X)) N

dscat = |SCG$(M1, MQ, Ty Mn

Bridge(X,Y) = {({Y'} U Pico(Y)).
For Fig. 1, the bridge nodes are represented as follows.

Bridge(A, D) = C, Bridge(D,E) = F

JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 8, NO. 1, MARCH 2006

M: Master, S: Slave, SS: Slave-slave bridge,
MS: Master-slave bridge

PICO(A)

e l

Fig. 1. Piconets and scatternets.

M: Master, S: Slave, SS: Slave-slave bridge, MS: Master-slave bndge

N(A) {3 12" N(D) 112 A7
NlA) {14117

NB)=(2 13
‘ N(B) e . @ @

N@)=[101] N(C) 202 ME=[101] NC)=(1 0 1] ND)=[101]"

Fig. 2. Node classification and node matrix: (a) Master/slave, (b) slave-
slave bridge, (c) master-slave bridge.

Table 1. Node parameters.
Parameter Symbol Details
Degree of node d Number of piconets which one
node belongs to
Role of node r For master/MS-bridge, r = 1
for stave/SS-bridge, r = 0
Number of links l Number of links connected to

anode

B. Node Classification

The nodes in a scatternet can be classified into four types:
Master, slave, MS-bridge, and SS-bridge. In general, MS-bridge
and SS-bridge may be used together in one scatternet topology.
However, only SS-bridge is used in {4], [13], [14], and only MS-
bridge is used in [6].

For the quantitative classification of nodes, the parameters
which determine node properties are introduced and listed in
Table 1. In particular, the number of links / which are connected
to one node satisfies the following relation.

I <r(Smax — 1) + d.
In other words, the maximum number of links which one node
can make is 7(Smax — 1) + d.
Based on the parameters in Table 1, a node matrix is intro-

LEE AND KAUH: A BLUETOOTH SCATTERNET REFORMATION ALGORITHM

Table 2. Node matrix and node weight according to node types.

Node type N(X) W(X)

Master L1177 V2+2(1>1)
Slave nony?r V2

SS-bridge [202]T /8

MS-bridge 21707 VB+I1Z(1>2)

duced and defined as follows.
N(X)=1[dri]T.

The examples of node matrices according to node types are
shown in Fig. 2. In addition, the node weight is defined as the
follows.

W(X) = [N (X)].

The node weight refers to the amount of loads which a node
can endure. The load which a node endures is proportional to
the number of links connected to the node, and a master node
has a larger load than a slave node. In addition, a bridge node
which has degree of nodes d over 2 endures a larger load than a
non-bridge node. The larger the node weight is, the more severe
the scatternet failure will be when the node leaves the scatternet.

In particular, the node which has very large degree of node
may pose as an obstacle in the networks [11]. Therefore, the
degree of node is limited to 2 [6], [10], [11], [13], [14]. Node
matrix and node weight according to the node types is listed in

Table 2.

IV. BLUETOOTH SCATTERNET REFORMATION
ALGORITHM

In this paper, the proposed reformation algorithm is made for
two reformation cases, i.e., nodes leaving and entering. For the
reformation when a node leaves a scatternet, a RNV algorithm
is proposed. For the reformation case where a node enters a
scatternet, an entry node algorithm is proposed. The RNV algo-
rithms will be presented in Section IV-A below. Next, the entry
node algorithm will be described in Section IV-B.

A. Recovery Node Vector Algorithm

In the distributed topology networks such as a scatternet, the
failure of one node may materially affect the entire network. The
amount of total network failure is determined in terms of the
node weight of the failed node. It is particularly important how
fast networks are recovered in the case where nodes leave the
network frequently. For example, some devices such as PDA,
cellular phone, notebook, etc., in wireless PAN may enter or
leave the network frequently depending on the intended purpose
of the user and may be terminated abruptly because of user’s
mistake or battery exhaustion. In these cases, it is important that
the network is recovered and the reformation process should be
undertaken as quickly as possible.

The recovery node vector algorithm was developed so that the
scatternet may be recovered and reformed when the above situ-
ation occurs. The RNV algorithm has the following properties.

61

Recovery master
RNV [8:{C}]

Recovery master
RNV [B:{C}]

(2) (b ©

Fig. 3. Overview of recovery node vector algorithm: (a) Node B sends
the information of node C (rSiave) to node A (rMaster), (b) node
B leaves the scatternet, (c) node A (rMaster) connects to node C
(rSlave) based on RNV.

(1) liis a general algorithm which can be applied to most scat-
ternet topology such as tree, star, mesh, and ring regardless
of the topology. In addition, the scatternet topology can be
maintained after the reformation process.

(2) In can be applied to the scatternet which does not have all
nodes in the radio coverage. However, all nodes in two
neighboring piconets are in the same radio coverage.

(3) It can be applied for both normal and abnormal node termi-
nation.

(4) It is operated based on four types of node namely master,
slave, MS-bridge, and SS-bridge.

(5) The network recovery and reformation include only the page
process. As there is no inquiry duration, the reformation
setup delay can be reduced.

(6) It can be applied to cases where more than two nodes leave
scatternet simultaneously.

Fig. 3 shows the schematic of the operation process of an
RINV algorithm is shown. There are three nodes (node A, B,
and C) as shown in Fig. 3(a), the roles of each node are mas-
ter, MS-bridge, and slave, respectively. These nodes exchange
information after connection is achieved. The exchanged in-
formation is composed of BD_ADDR, clock offset, and node
weight.

In particular, the information of BD_ADDR and clock offset
enables a node to make connection without having to undergo
any inquiry process. They are the essential parameters of a HCI
command, HCI_Create_Connection, in Bluetooth specification.
This command is used for activating baseband to perform a page
process. In general, a node gathers information during the in-
quiry process which normally takes 2 to 8 seconds hence result-
ing in network formation delay. However, with this algorithm,
a node gathers information through the exchange of information
with neighboring nodes after the connection process which takes
less than 1 second, and hence decreasing time delay.

After the connection process between two nodes is com-
pleted, the nodes designate a RM and RS among neighboring
nodes. If a node leaves a scatternet, the RM designated by the
node tries to connect to the RS designated by the node. In this
way, the scatternet is recovered and reformed. Therefore, the
designation of RM and RS is a core algorithm and is performed
using node weight exchanged between nodes.

The RM and RS designated by node X can be represented
as rMaster(X) and rSlave(X), respectively. For example, in

62
Fig. 3(a), the RM and RS are expressed as

rMaster(B) = A, rSlave(B) = C.

After a node designates the RM and RS, the node transfers
the information of the RS to the RM. Then, the RM makes a
RNV based on the information of the RS. If a RM receives the
information of the RS Y from the node X, the RNV is expressed
as follows (more than one RS can be designated).

RS Y from the node X : [X : {Y}].

In Fig. 3(a), node B designates nodes A and C as the RM
and RS, respectively, and RM A receives the information of RS
C from node B. Therefore, the RNV which RM A makes is
(B :{C}].

After node B leaves the scatternet as shown in Fig. 3(b), RM
A connects to RS C according to the RNV. In this way, the scat-
ternet is reformed.

Therefore, an important aspect of the RNV algorithm is that
the RM and RS of each node are designated in advance. If a
node leaves the scatternet, the recovery and reformation pro-
cess is activated immediately by the connection between the RM
and the RS. Therefore, these nodes have to reserve the RNV for
neighboring nodes.

The RNV algorithm is operated based on four types of nodes
as shown in Table 2. In the case of slave node (N(X) =
[1 0 1]T), no network failure occurs after a slave node leaves
the scatternet. Therefore, the reformation algorithm for the fail-
ure of a slave node need not be considered.

A.1 Algorithm for the Case of a Master Node Failure

If a master node leaves a scatternet, the piconet managed by
the master node -is broken entirely. This can result in severe
network failure throughout the scatternet structure. In the case
of a master node failure, the number of the RS may be more than
one because all members of the piconet managed by the failed
master are isolated from the scatternet.

The algorithm of designating the RM and RS in master node
is shown in Table 3. If a RM node is designated, the rest of the
piconet members which the failed master managed become the
RS nodes. :

The algorithm of designating the RM is decided depending
on the type of members in the piconet. A slave node has priority
over a bridge node in RM designation. If there are more than one
slave node in the piconet, one of the slave nodes is designated
as RM (Table 3 lines 4-5). An example of this case is shown in
Fig. 4(a).

If there is no slave node and only bridge nodes exist in the
piconet, an MS-bridge node has priority over an SS-bridge node
in RM designation (Table 3 lines 7—8). This case is shown in
Fig. 4(b). In Fig. 4(b), there are two bridge nodes C and E
in Pico(D), and node F is designated as the RM because it is
MS-bridge.

However, there are only SS-bridge nodes in the piconet, one
of SS-bridge nodes is designated as the RM (Table 3 lines 9-10).
This case is shown in Fig. 4(c). In Fig. 4(c), there are only SS-
bridge nodes C and E in Pico(D) and one of SS-bridge nodes,
C is designated as the RM by a master node D.

JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 8, NO. 1, MARCH 2006

Table 3. Algorithm for designating RM/RS in master node.

Node M is a master node, node B is one of slave nodes in

Pico(M)

1 if W(M) = V3 (|Pico(M)| = 1)

2 Do nothing

3 else if W (M) > /3 (|Pico(M)| > 2)

4 if there is a node B which satisfies W (B) =
(B is slave)

V2

5 Designate node B as r M aster(M)

6 else (All slave nodes are bridges, W(B) > V8)

7 if there is a node B which satisfies W(B) > v/9
(MS-bridge)

8 Designate node B as rMaster (M)

9 else (All slaves are SS-bridges)

10 Designate one of nodes in Pico(M) as

rMaster(M)

11 if rMaster(M) was designated
12 {rSlave(M)} = Pico(M) — {rMaster(M)}
(|Pico(M)| > 2)

Send Info. of B, D Nade A leaves the scatternet

()
®@@@

Recovery master C connects to B,
D based on the RNV [A:{B,D}]

Recovery master
RNV [4:{8,0)]

@ @ Info. of C

Node D leaves the scatternet

"S.ﬁ

Node D leaves the scanernet

& &
eRS @ @@

Recovery master C connects to £

Recovery master E
connects to C based
on the RNV [D:{C}]

eRe
@& ®

Recovery master

Send Info. of £

.J‘

very master
RNV 2R(5]]

Node A connects to £

", Info. of £ E :

@ orE @ W

Dlsconnects the link with £

->

Topology correction (optlonal process)
©

Fig. 4. Example of RNV algorithm in the case of a master node failure:
(a) Master A has more than one slave (lines 4-5), (b) master D has
more than one MS-bridge (lines 7-8), (c) master D has only SS-
bridge (lines 9—10).

In this process, the role of node C'is changed into MS-bridge
after the reformation. However, MS-bridge may be a new type
of node in Fig. 4(c), so that it may distort the existing scatternet
topology. Moreover, MS-bridge is not allowed in a few types
of topology {4], [13], [14]. In this case, a scatternet topology
correction process is necessary after the reformation process in
order to maintain the topology.

In Fig. 4(c), the process of the topology correction is shown.
In Fig. 4(c), MS-bridge C which is formed after the reformation

LEE AND KAUH: A BLUETOOTH SCATTERNET REFORMATION ALGORITHM

Table 4. Algorithm for designating RM/RS in SS-bridge node.

Node A is Bridge(M;, M2). node S; is one of slave nodes
in Pico(My) if exists. Node S is one of slave nodes in
Pico{ Mz} if exists.

1 if there is a slave node in Pico(M7) | Pico(Ms)

2 if there is a slave node in both Pico(My) and Pico(Mo)
3 W) > W)

4 Designate node M as rMaster(A)

5 Designate node S, as rSlave{A)

6 else

7 Designate node M; as rMaster(A)

8 Designate node S; as rSlave(A)

9 else if there is a slave node in only Pico(M7)

10 Designate node M, as rMaster(A)
11 Designate node S; as rSlave(A)
12 else

13 Designate node M, as rMaster(A)
14 Designate node Ss as rSlave(A)

15 else

16 if W(M;) > W(Ms)

17 Designate node M, as rMaster(A)
18 Designate node M, as rSlave(A)
19 else

20 Designate node M7 as rMaster(A)
21 Designate node My as rSlave(A)

breaks the link with node E and transfers the information of
node E to master node A. Then, master node A connects to
node E by means of the information from node C. Therefore,
after the topology correction, only SS-bridge node F exists and
no more MS-bridge node is in the scatternet. The SS-bridge is
a node type that is permissible in the scatternet. In this way, the
scatternet topology can be maintained.

A.2 Algorithm for the Case of an SS-bridge Node Failure

The algorithm for designating the RM and RS in an SS-
bridge node is shown in Table 4. If an SS-bridge node is
Bridge(My, M), the node can receive all the information of
two piconets Pico(M7) and Pico(Ms) from the two master
nodes My and M,. When the information is received, the SS-
bridge designates the RM and RS.

In contrast to the case of master node algorithm, a slave node
has priority over a bridge node in the RS designation. If there
are slave nodes in both piconets Pico(M;) and Pico(My), one
of the slave nodes in the piconet which has larger node weight
is designated as the RS and the master node in the other piconet
as the RM (Table 4 lines 2-8). The purpose for making this kind
of designation is to ensure that the node weight, if possible, of
each master node is fairly maintained.

In the case where there are slave nodes in only one piconet of
Pico(M7) and Pico(My), one of slave nodes is designated as
the RS, and the master node in the other piconet which has no
slave node is designated as the RM (Table 4 lines 9-14).

In Fig 5, some examples are shown. In Fig. 5(a), node C is
an $S-bridge node Bridge(A, D), and there is only one slave

63

Recavery master
RNV [C{B)]

. (@) (@)
g g "

Send Info. of B Node C leaves the scatternet

Recovery master D connects o8
based on the RNV [C{B)]
(a)

@ ‘M
sEBTEE e

Send Info. of A Node C leaves the scatternet Recovery master D connects to A
based on the RNV [C:{A}]

Recovery master
RNV [C:{A)]

Node A connects to 8
Topology correction (optional process)

Fig. 5. Example of RNV algorithm in the case of an SS-bridge node
failure: (a) There are more than one slave in one of two piconets
(lines 1—14), (b) there are only bridges in two piconets (lines 15~21).

info. of 8

Disconnects the link with B

node B in Pico(A). Therefore, node B is designated as the RS,
and the master node D becomes the RM. Next, node D receives
the information of RS B from node C and makes the RNV.

If there is no slave node in both piconets, the master of the
piconet which has larger node weight is designated as the RS,
and the master of the other piconet as RM (Table 4 lines 15-21)
for the purpose of the fairness with respect to node weight of
each master node. In Fig. 5(b), there are only bridge nodes in
both Pico(A) and Pico(D). After comparing the node weight
of both A and D, master A is designated as the RS and master
D as the RM.

Here, MS-bridge A is newly born after the reformation. Like
in the case of master node, the topology correction may be ap-
plied if deemed necessary.

A.3 Algorithm for the Case of an MS-bridge Node Failure

The algorithm for designating the RM and RS in an MS-
bridge node is shown in Table 5. If node A is an MS-bridge
node Bridge(M, A), node M becomes the master of node A,
and node A is the master node in Pico(A).

The first case is that there are only SS-bridge nodes in
Pico(A). In this case, the master node of the MS-bridge node
A is designated as the RM and all members in Pico(A) as the
RS (Table 5 lines 1-2). Some examples are shown in Fig. 6(a).
In Fig. 6(a), there is a MS-bridge node D and there are only
SS-bridge nodes C and E in Pico(D). The MS-bridge D des-
ignates node G which is the master node of itself to the RM, and
all the members in Pico(D) as the RS. Therefore, the informa-
tion of C and E is transferred to the RM G.

The second case is that there are slave or MS-bridge nodes
in Pico(A). In this case, two pairs between the RM and RS
are needed. The first RM node is always the master of MS-
bridge node A. The first RS node which is connected by the
first RM is designated among slave or bridge nodes in Pico(A).
Here, the first RS node plays the role of the second RM node
as well. Therefore, the node is operated as MS-bridge which
has two roles of both the first RS and the second RM after the

64

Table 5. Algorithm for designating RM/RS in MS-bridge node.

Node A is Bridge(M, A), node M is master of node A,
node B is a slave node in Pioc(A)

1 if all nodes in Pico(A) satisfies W (B) =+/8 (SS-bridge)
2 Designate node M as rMaster(A) and

{rSlave(A)} = Pico(A)
3 else

4 if there is a node B which satisfies W (B)=+/2 (slave)
5 iDesignate node B as second rMaster(A)

6 Second {rSlave(A)}= Pico(A)—{rMaster(A)}
7 Designate node M as first rMaster(A) and first

rSlave(A) = B
8 else there is a node B which satisfies W (B) > /9
(MS-bridge)

9 Designate node B as second rMaster(A)

10 Second {rSlave(A)} = Pico(A)—{rMaster(A)}

11 Designate node M as first rMaster(A) and first
rSlave(A) =

reformation. The rest of members in Pico(A) except the second
RM node become the second RS nodes which are connected to
by the second RM.

For the second RM designation, a slave node has priority over
an MS-bridge node as in the case of master node in Table 3. If
there are more than one slave node in Pico{ A), one of the slave
nodes is designated as the second RM, and the rest in Pico(A),
except the second RM, are designated as the second RS (Ta-
ble 5 lines 4-7). In Fig. 6(b), node B is an MS-bridge node
Bridge(A, B). Node A, which is the master node of the MS-
bridge, is designated as the first RM. In Pico(B), there is a slave
node D and this slave node D is designated as the first RS and as
the second RM simultaneously. The rest of Pico(B) (i.e., nodes
C and F) is designated as the second RS.

If there are only MS-bridge nodes in Pico(A), one of the
MS-bridge nodes is designated as the first RS and the second
RM. The remaining process is the same as the case where more
than one slave node exists (Table 5 lines 8—11). An example is
shown in Fig. 6(c). In Fig. 6(c), there is an MS-bridge node F
in Pico(C). Therefore, the MS-bridge node F is designated as
the second RM, and for the rest of Pico(C) (i.e., node B) is
designated as the second RS. The remaining process is the same
as shown in Fig.6(b).

A.4 Node Functions for Implementing RNV Algorithm

For implementing the RNV algorithm which was described in
Sections IV-A.1, A.2, and A.3, there are some functions that are
needed according to the node types. Here, the functions which
must be implemented according to node types such as master,
SS-bridge, MS-bridge, and RM are summarized below.

1. Master

(1) When a node becomes master, the node designates the RM
and RS based on the algorithm in Table 3, and transfers
the information of the RS to the RM. This process is re-
peated whenever the piconet, managed by the master node,

JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 8, NO. 1, MARCH 2006

Recovery master,
RNV [D:{C.E}]

Recovery master G
connects to C, £ based
Node D leaves on the RNV [D:{C.E}]
the scatternet

First recovery
master A
connects to D
based on the
RNV [B{D}]

First recovery master
RNV {8:{D}]

Node Bleaves
the scatternet

Second recavery master D
connects to C, £ based on the
RNV [B:{C.E})

E"S‘ e comecists Ebassaon ()
NV
(et the RNV [C4{E}
Info. of £
% Node C leaves

Info of B the scatternet

Second recovery

master RNV [C:{B}]

(C)

Fig. 6. Example of RNV algorithm in the case of an MS-bridge node
failure: (a) MS-bridge D has only SS-bridges (lines 1-2), (b) MS-
bridge B has more than one slave (lines 4-7), (¢) MS-bridge C has
more than one MS-bridge (lines 8—11).

Second recovery master
RNV [8:(C.E}]

Second
recovery
master £
connects to 8
based on the

is changed.

If there is an SS-bridge node connected to the master node,

the master node transfers the information of the total piconet

members to the SS-bridge node.

If the information of the RS is received from a bridge node

connected to the master node, the master node makes the

RNV for the bridge node. When one of bridge nodes con-

nected to the master node leaves the networks, the master

node checks the RNV. If the RNV for the bridge node is

found, the master node connects to the RS saved in the RNV.

2. SS-bridge

(1) When a node becomes SS-bridge, the SS-bridge node can re-
ceive the information of the two piconets from the two mas-
ter nodes connected to it. From this information, the RM and
RS are designated based on the algorithm in Table 4. Then,
the SS-bridge transfers the information of the RS to the RM.

3. MS-bridge

(1) When a node becomes MS-bridge, the node designates the
RM and RS based on the algorithm in Table 5, and transfers
the information of the RS to the RM. This process is repeated
whenever the piconet, managed by the MS-bridge node, is
changed.

(2) Perform the functions (2) and (3) of master.

4. Recovery master

(1) Whenever a neighboring node leaves the networks, a RM
node checks the RNV. If the RNV for the failed node is
found, the RM connects to the RS saved in the RNV.

)

&)

B. Entry Node Algorithm

For the reformation when a node enters a scatternet, an en-
try node algorithm is proposed. The reformation algorithm for

LEE AND KAUH: A BLUETOOTH SCATTERNET REFORMATION ALGORITHM

Table 6. Algorithm for designating an entry node.

Node Y is one of nodes in Pico{X)

1 if there is a node Y which satisfies W (Y') = v/2 (slave),
2 node Y is designated as an entry node

3 else (There are only bridge nodes in Pico(X))

4 if {Pico(X)| =1,

5 node X is designated as an entry node

Entry node
(inquiry scan)

()
& &

Inquiry
Ay

Entry node
(inquiry scan)

Entry node
(inquiry scan)

()
& & @

Entry node
(inquiry scan)

Entry node
{inquiry scan)

()

New node N can find nodes C, D, and G New node N connects to D {one of the entry nodes)

Fig. 7. Example of nodes entering the scatternet.

nodes entering a scatternet is relatively simple compared with
the reformation algorithm for nodes leaving a scatternet. In this
reformation algorithm, some nodes in the scatternet are desig-
nated as entry nodes. Then, the entry nodes are set into inquiry
scan states. When a new node conducts inquiry process in or-
der to enter the scatternet, the node will find only entry nodes.
Therefore, the new node will connect to one of the entry nodes.
As shown above, the entry node algorithm is very simple and
can be applied to most types of the scatternet regardless of the
topology. In addition, if a new node selects an entry node prop-
erly in the connection process, the scatternet topology can be
also maintained.

B.1 Algorithm for Designating Entry Nodes

Entry nodes are designated based on the algorithm shown in
Table 6. As one of the entry nodes is connected to as slave by
a new node, the degree of entry nodes increases by one after
the new node enters the scatternet. The degree of bridges nodes
may be 3 if the bridges nodes are designated as the entry nodes.
Therefore, bridge nodes are not designated as entry nodes, and
they are designated among slave or master nodes.

If Pico(X) has at least one slave node, the slave node is des-
ignated as the entry node (Table 6 lines 1-2). If Pico(X) has no
slave node and only one bridge node, node X which is a mas-
ter of Pico(X) is designated as the entry node (Table 6 lines
3-5). If all piconets in a scatternet have no slave node, and only
bridge nodes, there will be at least one piconet which has only
one bridge node.

More than one entry node can be designated in one scatternet.
All entry nodes are set into inquiry scan states so that the new
node can find the entry nodes.

B.2 Connection Establishment Scheme

A new node that wishes to enter the scatternet finds the entry
nodes in the inquiry process. As more than one node can be

65

designated as the entry node, the new node can find more than
one node.

However, the new node cannot connect to all of the nodes
found in an inquiry process. The new node should check if
the nodes found support the scatternet reformation, because it
is possible that the new node may connect to other node which
is not in the scatternet. This checking process is conducted using
service discovery protocol (SDP) [1], [2].

In the SDP process, the node weights of the entry nodes can
be sent to the new node. Using the node weights of the entry
nodes, the new node can select one of entry nodes with the low-
est node weight. Here, a new node may select only slave nodes
or only master nodes in order to retain the scatternet topology
after the reformation process. After that, the new node connects
to the selected node, and become a member of the scatternet.

Fig. 7 shows an example of the entry node algorithm. There
are two slave nodes C' and D in Pico(A), and a master node G
whose |Pico(G)| is 1. From the algorithm shown in Table 6,
nodes C, D, and G are designated as entry nodes, and set into
inquiry scan states. A new node N can find only entry nodes.
Therefore, node selects one of entry nodes with the lowest node
weight, namely node D (or node C'), and connects to it.

V. HARDWARE EXPERIMENTS AND RESULTS

Hardware experiments were performed using a real com-
mercial Bluetooth module to evaluate the performance of the
proposed reformation algorithm, which was described in Sec-
tion IV. In addition, some problems in the hardware operation
were solved. Four parameters: reformation setup delay, refor-
mation setup probability, number of messages and data transfer
rate, were considered to evaluate the performance of the algo-
rithm. These parameters have been generally used for evaluating
the performance in past researches [4], [11]. The reformation
setup delay, the reformation probability and the data transfer rate
were taken from the experiments as discussed in Sections V-C
and V-D. The number of messages will be briefly described in
Section V-B.

A. Experimental Systems and Methods

The system used for the experiments is shown in Fig. 8. The
system is composed of PC and PC interface board. The PC is
the host which contains higher layer Bluetooth protocol such as
L2CAP and SDP in the software. The PC interface board in-
cludes the commercial Bluetooth module which contains lower
layer Bluetooth protocols such as baseband and link manager in
the firmware. The commercial Bluetooth module used in the PC
interface board is made by Samsung Electromechanics whose
power level is class 2 and compatible to version 1.1 Bluetooth
specification.

For the interface between PC and PC interface board, host
controller interface (HCI) is used via USB. All controls and
data exchanges can be performed by means of HCI {1}, [2]. As
shown in Fig. 8, there are only lower Bluetooth protocols in the
commercial Bluetooth module. Therefore, a higher layer pro-
tocol stack such as LZCAP, SDP and scatternet application was
implemented in the PC software. The OS in the PC is Windows
XP Professional. All nodes exist in the room whose size is 3

66

PC ﬁ‘

ﬁk

]
L2CAP uUsB RS232 SPI
ol interface interface interface

Level
uss shifter
a Bluetooth

Bluetooth PC interface board

LMP

BASEBAND

Bluetooth PC
interface board

Fig. 8. Structure of hardware and protocol.

mx 3 m. Therefore, all nodes exist in the transfer range of class
2 module.

B. Methods of Exchanging Information between Nodes

In order for the RNV algorithm, some pieces of information
are exchanged between two nodes. The details of the informa-
tion are BD_ADDR, clock offset and node weight. The method
of exchanging these kinds of information varies according to the
node types.

A master node saves BD_ADDR and clock offset of the slave
node prior to connection. Therefore, the information of only
node weight is needed. However, a slave node does not have
any information on a master node prior to connection. After the
connection between two nodes, the HCI event named Connec-
tion_Complete is generated to both nodes. Because the HCI
event contains the BD_ADDR of the remote node, the slave
node can obtain the BD_ADDR of the master node from the
event.

The other information should be exchanged via ACL link af-
ter the connection. The master node transfers the packet which
contains its clock offset and its node weight to the slave node. In
the opposite direction, the slave node transfers the packet which
contains only its node weight. Basically, all nodes can gather the
information of neighboring nodes connected to it. The informa-
tion which is gathered in advance is used for the algorithm for
designating RM and RS.

Therefore, two messages are exchanged whenever two nodes
are connected. In addition, a master node transfers one message
to each of the RM and SS-bridge node whenever the members of
the piconet, managed by the master, are changed. The total num-
ber of messages varies according to the number of the piconet
members and the SS-bridge nodes. On average, the number of
the messages which are used for the RNV algorithm in a piconet
which has 6 slave nodes is about 20.

C. Experimental Results and Performance Evaluation of the
RNV Algorithm

First, the reformation in the case of a master node failure is
treated. In this paper, the maximum number of slave nodes in a
piconet s,,,. is set to be 6. In addition, the reformation process
in the case of a master failure is not needed when only one node
except the master exists in the piconet. Therefore, the reforma-
tion setup delay was measured by varying the number of piconet

JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 8, NO. 1, MARCH 2006

10000
| —a— only page process

90004 —¥— Inquiry and page process
8000 o
7000
6000
5000 o
4000 - v
3000 |
2000

1000 A/
L T T

2 3 4 5 8
Number of nodes in a piconet except master Syax = 6

Reformation setup delay (msec)

Fig. 9. Reformation setup delay in the case of master node failure.

100 - ¢ o

\ \0\.

S 90 T

> %7 \ v\\v

.(b; A \v

5 w0 \

a A

(=8

=

© 70

c

0o

8 6

g —A— No reconnection

2 —w— 1 reconnection

& | —®— 2reconnection A
T T T T T
2 3 4 5 6

Number of nodes in a piconet except master Syax = 6

Fig. 10. Reformation setup probability in the case of master node failure.

nodes not including the master node from 2 to 6.

In Fig. 9, the reformation setup delay is shown for the case
of a master node failure. The delay increases linearly as the
number of nodes in the piconet managed by the master node
increases, If there are NV nodes in the piconet, N — 2 nodes
are designated as the RS by the master because the master and
the RM nodes are excluded from the RS designation. In the
case of the master failure, the RM must repeat the page process
N — 2 times. Therefore, the reformation setup delay has the
linear relation to the number of piconet nodes.

In Fig. 9, the results of reformation including both inquiry
and page process are shown. The RNV algorithm performed
only page process in the reformation process in contrast with
other reformation algorithm such as [13] that includes both in-
quiry and page process. In Fig. 9, the results of the reforma-
tion including only page process which is designed in the RNV
algorithm have shorter delay, which is 23~60% of the results
including both inquiry and page process.

In Fig. 10, the reformation setup probability is shown for the
case of master node failure. In contrast to the delay, the refor-

LEE AND KAUH: A BLUETOOTH SCATTERNET REFORMATION ALGORITHM

7000

1 —a— No reformation
—w— 1 reformation ¢
60001 —4~ 2 reformation v
m
2
£ 5000
>
©
3 4000 +
[«
2
@ 3000
o
i
®
E 2000
2
Jod
o
1000 -
T T T T T
2 3 4 5 6
Number of nodes in a piconet except master Syax = 6
Fig. 11. Reformation setup delay using reconnection algorithm in the

case of master node failure.

mation setup probability decreases according to the number of
nodes in the piconet, managed by the master node, increases.
When a Bluetooth node repeats the page process in the real
hardware, the timeout error which is called the page timeout
error occurs whenever a page process is not performed prop-
erly within the established time. The error code is assigned as
0x04 in Bluetooth specification [1], {2]. The frequency of the er-
ror occurrence may vary according to Bluetooth hardware, but
this generally occurs for most Bluetooth hardware. This time-
out error occurs more frequently as the number of page process
increases, which in turn decreases the reformation setup prob-
ability. In the case of 6 nodes in the piconet, the reformation
setup probability is taken as 50%.

For solving this problem, the reconnection algorithm is in-
troduced. Through this reconnection algorithm, a node repeats
the page process whenever the page timeout occurs. In Fig. 10,
the results of using the reconnection algorithm are shown. Even
through a reconnection, the reformation setup probability can be
increased remarkably. When the reconnection is allowed up to
two times, the reformation setup probability increases to over
97% for 6 piconet nodes.

However, this reconnection process tends to increase the ref-
ormation setup delay. So, the reformation setup delay in the
cases was measured for two instances: One is the case when
one time reconnection is allowed and the other case is when
up to two time reconnections are allowed. The results of those
cases are shown in Fig. 11. The reformation setup delay is seen
to have increased because of reconnection algorithm. However,
the results are still 25~76% of the reformation results including
both inquiry and page process.

Second, the reformation in the case of MS-bridge failure was
also investigated. As mentioned above, at least two links should
be recovered after an MS-bridge node failed. One link between
first RM and first RS should be made, and more than one link
between second RM and second RS should be made. In Fig. 12,
the reformation setup delay is longer than the result of master
node failure. The reason is the creation of an additional link
if formed between first RM and first RS. The delay difference

67

6000 —®— Master node failure .

—&— MS-bridge node failure /
o |
5000 /
4000
3000

2000 4 -

./
1000 .

T T T T

T
2 3 4 5 6
Number of nodes in a piconet except master Syax =6 1

Reformation setup delay (msec

Fig. 12. Reformation setup delay in the case of MS-bridge node failure.

100 4
90
80
70
60

50

40 -
—&— Master node failure

—w— MS-bridge node failure v
—&— MS-bridge node failure (connection oreder applied)

2 3 4 5 6
Number of nodes in a piconet except master Smax = 6

Reformation setup delay (msec)

30

Fig. 13. Reformation setup probability in the case of MS-bridge node
failure.

between master and MS-bridge failure is about 600 ms. The
difference in the time consumed is due to the additional link
formed between first RM and first RS.

However, the reformation setup probability decreases remark-
ably as the number of nodes in the piconet, managed by the MS-
bridge node, increases in comparison with the results of master
node failure. The results are shown in Fig. 13. The reason for
this is presumably due to the collision in page process.

An example of this case is given in Fig. 6(b). Second, RM D
designated by the MS-bridge B must connect to the second RS
C and E after the failure of MS-bridge B. At the same time, the
second RM D is connected to by the first RM A which is the
master of MS-bridge B. If node A tries to connect to the second
RM D while the second RM D tries to connect to the second RS
C and E, this collision occurs. This collision may occur more
frequently as the number of the second RS like nodes C and E
increases which in turn may result in the low reformation setup
probability as shown in Fig. 13.

In order to solve this problem, the connection order for the

68

Node A leaves
the scatternet

Recovery master
RNV
[A{B. S1, S2...,S0}]

Fig. 14. Scenario of data traffic experiments.

MS-bridge failure is set. In Fig. 6(b), the first RM A connects to
the second RM D in advance. The second RM D does not try to
connect to the second RS until the connection with first RM A
is terminated. After this connection, the second RM D tries
to connect to the second RS. Through this simple connection
order, the above-mentioned collision can be avoided. The results
are also shown in Fig. 13. The reformation setup probability
of the case in which the connection order is applied increases
remarkably in comparison with the results of the case in which
no connection order is applied. The results are almost similar
to those of the master node failure. In the results of Fig. 13, no
reconnection algorithm as shown in Fig. 10 is applied.

In the case of SS-bridge failure, only one link between the
RM and RS which are designated by the failed SS-bridge node
must be recovered. This is a simple process and will not be
discussed in further detail herein.

In addition, an experiment when there is data traffic was per-
formed. The experimental scenario is shown in Fig. 14. There
is a master node A, and slave nodes B, C, and S,,. While nodes
B and C are fixed, the number of node S,, varies from 1 to 5.
Node 51, one of nodes S,,, was designated as a recovery master.

Here, node B sends traffic data to node C' via master node
A. The packet type of traffic data is DMS5, and single packet
includes user data of 200 bytes. The transfer rate of user data
which is sent from node B to node C' is set to 93 kbps.

In the middle of sending traffic data from node B to node
C, master node A is suddenly powered off, causing data trans-
mission to stop. Then, recovery master S; connects to all the
remaining nodes after which data transmission is reactivated.
Here, the traffic data are sent via node S7.

As the number of nodes in Pico(A) varies from 3 to 7, the av-
erage transfer rate was measured. The total amount of the data
traffic was also varied from 100 kbytes to 5 Mbytes. The exper-
imental results are shown in Fig. 15. As |Pico(A)| increases,
the average data transfer rate decreases, because the reforma-
tion setup delay increases. However, as the total amount of the
data traffic increases, the influence of the reformation setup de-
lay is weakened. Therefore, the average transfer rate approaches
93 kbps as the amount of total data traffic increases.

D. Experimental Results and Performance Evaluation of the
Entry Node Algorithm

The reformation setup delay when a node enters a scatter-
net was also measured. The entry node algorithm shown in Ta-
ble 6, includes an inquiry process. In addition, some data are
exchanged for SDP process. Therefore, the delay time for nodes
entering a scatternet can be expressed as follows.

JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. §, NO. 1, MARCH 2006

100

ENggENgetEEeeEn
22222

;;;;_;_;z.i%i T LT

—=— No reformation

Average transfer rate (kbps)

—e— Reformation when |Pico(A)] = 3

—a— Reformation when |Pico(A)| = 4

------- v— Reformation when |Pico(A)| = 5

—— Reformation when |Pico(A)| = 6

—»— Reformation when |Pico(A)| =7

50 T T T T T 1
0 1000 2000 3000 4000 5000

Total data traffic (kbyte)

Fig. 15. Average data transfer rate when a master node leaves a scat-

ternet.
6000 4
[Data exchange (Tqawa)
5000 n t Page (Tpage)
n a W Inquiry (Ting)
—_ - r1
B I8
9 !
£ 4000 1 B
; 21 ry n"
o n
[
o
(=5
2 3000 r
Z n n
@ i
<
k-] :
I} 3]
£]
.§ 2000 n-
D [
4 a0
3}
- I I I | n I ‘ | |
(R e s s I l I iy

4 5 6 7 8 91011121314151617 18 19 20 21 22 23 24 25 26 27 28 29 30
Number of measurements

Fig. 16. Reformation setup delay in the case of nodes entering a scat-
ternet.

Ttotal = Tinq + Tpage + Tdata~

In above relation, Tinq, Tpage and Tyata are the times con-
sumed in an inquiry, a page and a SDP data exchange process,
respectively. The experimental results are shown in Fig. 16. In
that experiment, the delay time which is consumed for one new
node entering a scatternet was measured. The data shown in
Fig. 16 are the results of 30 time repetitions of the measure-
ments. These real measurements were taken again 100 times.
As shown in Fig. 16, Ti,q and Tjag. varies considerably. The
average value of Tj,q is 2705 msec, but the standard deviation
of Ting is 1311 msec. Therefore, the extent of variation is very
large. The average value of T, 15 309 msec and the standard
deviation is 185 msec. Although the variation of T}, is smaller
than that of Ti,, the extent of variation is still large. However,
Taata remains almost constant. The average value of Tiy,¢, is 89
msec and the standard deviation is 9 msec.

Because the inquiry process is included when a node enters a
scatternet, the delay time becomes longer than that of the RNV

LEE AND KAUH: A BLUETOOTH SCATTERNET REFORMATION ALGORITHM

algorithm and the variation of the delay time is large. However,
this inquiry process is an essential process for instances where a
new node enters a scatternet.

VI. CONCLUSION

In this paper, we proposed a scatternet reformation algorithm
which has not been extensively researched in the past. This al-
gorithm is a reformation process that can be applied to the case
where more than one node enter or leave the scatternet and are
divided into two algorithms, i.e., RNV algorithm and entry node
algorithm. While the RNV algorithm is applied to the scatter-
net reformation when a node leaves a scatternet, the entry node
algorithm is applied to the scatternet reformation when a node
enters a scatternet.

The RNV algorithm has the following properties. First, this
algorithm is operated based on each node. Therefore, it is a
general algorithm which can be applied to most types of the
scatternet regardless of the topology. In addition, the scatternet
topology is retained after the reformation process. Second, most
nodes in the scatternet produce RNV which are used for recov-
ering links and reforming networks when one of the neighboring
nodes leaves the scatternet. Third, the reformation algorithm in-
cludes only a page process. As inquiry process is not required,
the reformation setup delay can be reduced remarkably.

The entry node algorithm has the following properties. First,
some nodes in the scatternet are designated as entry nodes.
These entry nodes are set into inquiry scan states. Therefore,
a new node that wishes to enter the scatternet can find the entry
nodes and connect to them. Second, the entry node algorithm
is very simple and can be applied to most types of the scatter-
net regardless of the topology. Third, if a new node can select
an entry node properly in the connection process, the scatternet
topology can also be maintained.

The proposed algorithm was implemented in a real commer-
cial Bluetooth hardware and the experiments were performed to
evaluate its performance. In addition, we presented a few so-
lutions to solve certain problems which may occur in hardware
implementation. In the experiments, the reformation setup de-
lay, the reformation setup probability and the data transfer rate
were measured. In comparison with the case where the inquiry
process is undertaken, the RNV algorithm has shown to reduce
reformation setup delay and increase reformation setup proba-
bility of over 97%. The data transfer rate was hardly influenced
even when the total amount of the data traffic increased.

From the above results, we could safely conclude that the
Bluetooth scatternet can be applied to dynamic ad-hoc networks
like WPAN. Furthermore, the proposed algorithm can be eas-
ily used in the existing scatternet formation algorithm by adding
some functions, and the concrete and practical performance can
be verified by the real commercial hardware implementation and
experiments. In addition, the proposed algorithm can also be ap-
plied to other ad-hoc networks similar to the Bluetooth.

The applicability of WPAN using the proposed reformation
algorithm is currently being tested. This test will evaluate the
practical usage of the proposed reformation algorithm more con-
cretely.

69

ACKNOWLEDGMENTS

Authors gratefully acknowledge the financial support of Brain
Korea 21 and ERC of Korean Science and Engineering Founda-
tion.

REFERENCES

[1] Bluetooth SIG, “Specification of the Bluetooth system verl.1,” available
at http://www.bluetooth.org, 2001.

[2] Bluetooth SIG, “Specification of the Bluetooth system verl.2.” available
at http://www.bluetooth.org, 2003.

{31 L.Ramachandran, M. Kapoor, A. Sarkar, and A. Aggarwal, “Clustering al-
gorithms for wireless ad-hoc networks,” in Proc. 4th DIALM 2000, Boston,
USA, Aug. 2000, pp. 54-63.

[4] T.Salonidis, P. Bhagwat, L. Tassiulas, and R. LaMaire, “Distributed topol-
ogy construction of Bluetooth personal area networks,” in Proc. IEEE IN-
FOCOM 2001, Anchorage, USA, Apr. 2001, pp. 1577-1586.

[5] G. Zaruba and S. Basagni, “Bluetress-scatternet formation to enable
Bluetooth-based ad-hoc networks,” in Proc. IEEE ICC 2001, Helsinki,
Finland, June 2001, pp. 273-277.

[6] C.C.FooandK. C. Chua, “Bluering-Bluetooth scatternets with ring struc-
tures,” in Proc. 2nd WOC 2002, Banff, Canada, July 2002.

[71 C.Petrioli, S. Basagni, and I. Chlamtac, “Configuring blueStars: Multihop
scatternet formation for Bluetooth networks,” IEEE Computer, vol. 52,
pp. 779-790, June 2003.

[8] Z. Wang, R. J. Thomas, and Z. J. Haas, “Bluenet-a new scatternet forma-
tion scheme,” in Proc. 35th HICSS 2002, Hawaii, USA, Jan. 2002.

[9] C. Petrioli, S. Basagni, and 1. Chlamtac, “BlueMesh: Degree-constrained

multihop scatternet formation for Bluetooth networks,” Mobile Network-

ing and Appl., vol. 9, pp. 3347, Feb. 2004.

C. Lay and K. Y. Siu, “A Bluetooth scatternet formation algorithm,” in

Proc. 44th GLOBECOM 2001, San Antonio, USA, Nov. 2001, pp. 2864—

2869.

C. Law, A. K. Mehta, and K. Y. Siu, “Performance of a new Bluetooth

scatternet formation protocol,” in Proc. 2nd MobiHoc 2001, Long Beach,

USA, Nov. 2001, pp. 182-192.

G. Tan, A. Miu, J. Guttag, and H. Balakrishnan, “Forming scatternets from

Bluetooth personal area networks,” MIT Technical Report MIT_LCS-TR-

826, Oct. 2001.

T. Y. Lin, Y. C. Tseng, K. M. Chang, and C.L Tu, “Formation, routing, and

maintenance protocols for the blueRing scatternet of Bluetooths,” in Proc.

36th HICSS 2003, Hawaii, USA, Jan. 2003, pp. 313-322.

H. Zhang, J. C. Hou, and L. Sha, “A Bluetooth loop scatternet forma-

tion algorithm,” in Proc. IEEE ICC 2003, Anchorage, USA, May. 2003,

pp- 1174-1180.

S. Basagni, R. Bruno, and C. Petrioli, “A performance comparison of scat-

ternet formation protocols for networks of Bluetooth devices,” in Proc. Ist

PerCom 2003, Fort Worth, USA, Mar. 2003, pp. 341-350.

£10]

(1]

(12

[13]

[14]

[15]

Han-Wook Lee was born in Seoul, Republic of Ko-
rea, on September 16, 1975. He received the B.Sc.
and the M.Sc. in Mechanical & Aerospace Engineer-
ing from the Seoul National University, Republic of
Korea, in 1999 and 2001, respectively. Now, he is in
Ph.D course in Seoul National University. His ma-
jor interests are ad-hoc network, Bluetooth scatternet,
wireless sensor networking, and telemetry system.

S. Ken Kauh was born in Republic of Korea, on
April 1, 1956. He received the B.Sc., the M.Sc., and
the D.Sc degrees in Mechanical Engineering from the
Seoul National University, Seoul, in 1978, 1980, and
1987, respectively. From February 1988 to February
1989, he was a senior researcher in Stanford Univer-
sity, USA. From December 1997 to 1999, he was a
guest-professor in UCLA, USA. From March 1989,
he has been a professor of department of Mechanical
& Aerospace Engineering in Seoul Nationat Univer-

- sity. His major interests are telemetry system, wireless
sensor networking, and temperature and torque measurement.

