• Title/Summary/Keyword: Bridge Mode

Search Result 641, Processing Time 0.026 seconds

Extraction of quasi-static component from vehicle-induced dynamic response using improved variational mode decomposition

  • Zhiwei Chen;Long Zhao;Yigui Zhou;Wen-Yu He;Wei-Xin Ren
    • Smart Structures and Systems
    • /
    • v.31 no.2
    • /
    • pp.155-169
    • /
    • 2023
  • The quasi-static component of the moving vehicle-induced dynamic response is promising in damage detection as it is sensitive to bridge damage but insensitive to environmental changes. However, accurate extraction of quasi-static component from the dynamic response is challenging especially when the vehicle velocity is high. This paper proposes an adaptive quasi-static component extraction method based on the modified variational mode decomposition (VMD) algorithm. Firstly the analytical solutions of the frequency components caused by road surface roughness, high-frequency dynamic components controlled by bridge natural frequency and quasi-static components in the vehicle-induced bridge response are derived. Then a modified VMD algorithm based on particle swarm algorithm (PSO) and mutual information entropy (MIE) criterion is proposed to adaptively extract the quasi-static components from the vehicle-induced bridge dynamic response. Numerical simulations and real bridge tests are conducted to demonstrate the feasibility of the proposed extraction method. The results indicate that the improved VMD algorithm could extract the quasi-static component of the vehicle-induced bridge dynamic response with high accuracy in the presence of the road surface roughness and measurement noise.

Seismic Analysis of 3D-Truss by Response Spectrum (응답스펙트럼에 의한 트러스 구조물의 내진해석)

  • 안주옥;이승재
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.04a
    • /
    • pp.159-168
    • /
    • 1999
  • In seismic analysis, there are two main ways - uniform load method and dynamic analysis, dynamic analysis can be divided into response spectrum analysis and time history analysis. In case of which get the complexion of the vibration with 3-axis of coordinate direction in each mode of free vibration mode happened owing to complication of the shape, 3-dimensional dynamic analysis is recommended to perform as multi-mode spectral analysis in standard specification for highway bridge. The purpose of this study is to understand the dynamic behavior by performing multi-mode seismic analysis according to responses analysis and time history anal)'sis in using record of earthquake. In accordance with the criterion of seismic design as defined in standard specification for highway bridge by using modified records of the El Centre and Coyote Lake earthquake, response spectrum was constructed by using the tripartite logarithmic plot. The 3-span continuous space truss bridge was selected as model of numerical analysis. As the result performed time history analysis and analysis of response spectrum for the model of numerical analysis, the result of time history analysis was slightly larger than that of response spectrum analysis. This coincide with the tendency of the result came from the analysis when using a jagged response spectrum analysis, This coincide with the tendency of the result came from the analysis when using a jagged response spectrum for a single excitation. In the Process of performing these two analysis. response spectrum analysis is more effective than time history analysis in saving times in analyzing data.

  • PDF

Prediction of bridge flutter under a crosswind flow

  • Vu, Tan-Van;Lee, Ho-Yeop;Choi, Byung-Ho;Lee, Hak-Eun
    • Wind and Structures
    • /
    • v.17 no.3
    • /
    • pp.275-298
    • /
    • 2013
  • This paper presents a number of approximated analytical formulations for the flutter analysis of long-span bridges using the so-called uncoupled flutter derivatives. The formulae have been developed from the simplified framework of a bimodal coupled flutter problem. As a result, the proposed method represents an extension of Selberg's empirical formula to generic bridge sections, which may be prone to one of the aeroelastic instability such as coupled-mode or single-mode (either dominated by torsion or heaving mode) flutter. Two approximated expressions for the flutter derivatives are required so that only the experimental flutter derivatives of ($H_1^*$, $A_2^*$) are measured to calculate the onset flutter. Based on asymptotic expansions of the flutter derivatives, a further simplified formula was derived to predict the critical wind speed of the cross section, which is prone to the coupled-mode flutter at large reduced wind speeds. The numerical results produced by the proposed formulas have been compared with results obtained by complex eigenvalue analysis and available approximated methods show that they seem to give satisfactory results for a wide range of study cases. Thus, these formulas can be used in the assessment of bridge flutter performance at the preliminary design stage.

Strength failure behavior of granite containing two holes under Brazilian test

  • Huang, Yan-Hua;Yang, Sheng-Qi;Zhang, Chun-Shun
    • Geomechanics and Engineering
    • /
    • v.12 no.6
    • /
    • pp.919-933
    • /
    • 2017
  • A series of Brazilian tests under diameter compression for disc specimens was carried out to investigate the strength and failure behavior by using acoustic emission (AE) and photography monitoring technique. On the basis of experimental results, load-displacement curves, AE counts, real-time crack evolution process, failure modes and strength property of granite specimens containing two pre-existing holes were analyzed in detail. Two typical types of load-displacement curves are identified, i.e., sudden instability (type I) and progressive failure (type II). In accordance with the two types of load-displacement curves, the AE events also have different responses. The present experiments on disc specimens containing two pre-existing holes under Brazilian test reveal four distinct failure modes, including diametrical splitting failure mode (mode I), one crack coalescence failure mode (mode II), two crack coalescences failure mode (mode III) and no crack coalescence failure mode (mode IV). Compared with intact granite specimen, the disc specimen containing two holes fails with lower strength, which is closely related to the bridge angle. The failure strength of pre-holed specimen first decreases and then increases with the bridge angle. Finally, a preliminary interpretation was proposed to explain the strength evolution law of granite specimen containing two holes based on the microscopic observation of fracture plane.

Finite element model updating of a cable-stayed bridge using metaheuristic algorithms combined with Morris method for sensitivity analysis

  • Ho, Long V.;Khatir, Samir;Roeck, Guido D.;Bui-Tien, Thanh;Wahab, Magd Abdel
    • Smart Structures and Systems
    • /
    • v.26 no.4
    • /
    • pp.451-468
    • /
    • 2020
  • Although model updating has been widely applied using a specific optimization algorithm with a single objective function using frequencies, mode shapes or frequency response functions, there are few studies that investigate hybrid optimization algorithms for real structures. Many of them did not take into account the sensitivity of the updating parameters to the model outputs. Therefore, in this paper, optimization algorithms and sensitivity analysis are applied for model updating of a real cable-stayed bridge, i.e., the Kien bridge in Vietnam, based on experimental data. First, a global sensitivity analysis using Morris method is employed to find out the most sensitive parameters among twenty surveyed parameters based on the outputs of a Finite Element (FE) model. Then, an objective function related to the differences between frequencies, and mode shapes by means of MAC, COMAC and eCOMAC indices, is introduced. Three metaheuristic algorithms, namely Gravitational Search Algorithm (GSA), Particle Swarm Optimization algorithm (PSO) and hybrid PSOGSA algorithm, are applied to minimize the difference between simulation and experimental results. A laboratory pipe and Kien bridge are used to validate the proposed approach. Efficiency and reliability of the proposed algorithms are investigated by comparing their convergence rate, computational time, errors in frequencies and mode shapes with experimental data. From the results, PSO and PSOGSA show good performance and are suitable for complex and time-consuming analysis such as model updating of a real cable-stayed bridge. Meanwhile, GSA shows a slow convergence for the same number of population and iterations as PSO and PSOGSA.

An analytical algorithm for assessing dynamic characteristics of a triple-tower double-cable suspension bridge

  • Wen-ming Zhang;Yu-peng Chen;Shi-han Wang;Xiao-fan Lu
    • Structural Engineering and Mechanics
    • /
    • v.90 no.4
    • /
    • pp.325-343
    • /
    • 2024
  • Triple-tower double-cable suspension bridges have increased confinement stiffness imposed by the main cable on the middle tower, which has bright application prospects. However, vertical bending and torsional vibrations of the double-cable and the girder are coupled in such bridges due to the hangers. In particular, the bending vibration of the towers in the longitudinal direction and torsional vibrations about the vertical axis influence the vertical bending and torsional vibrations of the stiffening girders, respectively. The conventional analytical algorithm for assessing the dynamic features of the suspension bridge is not directly applicable to this type of bridge. This study attempts to mitigate this problem by introducing an analytical algorithm for solving the triple-tower double-cable suspension bridge's natural frequencies and mode shapes. D'Alembert's principle is employed to construct the differential equations of the vertical bending and torsional vibrations of the stiffening girder continuum in each span. Vibrations of stiffening girders in each span are interrelated via the vibrations of the main cables and the bridge towers. On this basis, the natural frequencies and mode shapes are derived by separating variables. The proposed algorithm is then applied to an engineering example. The natural frequencies and mode shapes of vertical bending and torsional vibrations derived by the analytical algorithm agreed well with calculations via the finite element method. The fundamental frequency of vertical bending and first- and second-order torsion frequencies of double-cable suspension bridges are much higher than those of single-cable suspension bridges. The analytical algorithm has high computational efficiency and calculation accuracy, which can provide a reference for selecting appropriate structural parameters to meet the requirements of dynamics during the preliminary design.

Dynamic Analysis and Control Design of Current-Mode Controlled Asymmetrical Half-Bridge DC-To-DC Converters (전류 제어 비대칭 하프 브릿지 직류-직류 컨버터의 동특성 해석 및 제어회로 설계)

  • Lim W.S.;Choi B,C.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07a
    • /
    • pp.337-340
    • /
    • 2003
  • This paper presented practical details about control-loop design and dynamic analysis for a peak current-mode controlled asymmetrical half-bridge(ASHB) do-to-dc converter, Graphical loop gain method is used to design the feedback compensation and analyze the closed-loop performance of ASHB converter. The results of the control design and closed-loop analysis are validated by experiments on a prototype converter.

  • PDF

A Study on the Reduction of high frequency leakage current in PWM inverter fed Induction Motor (PWM 인버터로 구동된 유도전동기의 누설전류 억제에 관한 연구(II) -능동형 커먼 모드 전압 감쇄기를 이용한 고주파 누설전류 억제-)

  • 성병모;류도형;박성준;김철우
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.5 no.5
    • /
    • pp.443-450
    • /
    • 2000
  • A PWM inverter for an induction motor often has a problem with a high frequency leakage current that flows through stray capacitors between stator windings and a motor frame to ground. This paper proposes a new type of Active Common Mode Voltage Canceler circuit for the reduction of common mode voltage and high frequency leakage current generated by the PWM VSI-fed induction motor drives. The compensating voltage applied by the common made voltage canceler has the same amplitude as, hut the opposite polarity to, the common mode voltage by PWM Inverter. Therefore, common mode voltage and high frequency leakage current can be canceled. The proposed circuit consists of four-level half-bridge inverter and common-mode transformer. Simulated and experimental results show that common mode voltage canceler makes significant contributions to reducing a high frequency leakage current.

  • PDF

A New Mode Changable Asymmetric Full Bridge DC/DC Converter having 0 ~ 100 % Duty Ratio (0 ~ 100 % 시비율을 갖는 새로운 모드 가변형 비대칭 풀 브리지 DC/DC 컨버터)

  • Shin, Yong-Saeng;Roh, Chung-Wook;Hong, Sung-Soo;Han, Sang-Kyoo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.15 no.2
    • /
    • pp.103-110
    • /
    • 2010
  • In this paper, a new mode changeable asymmetric full bridge dc/dc converter is proposed to solve the freewheeling current problem of the conventional zero voltage switching(ZVS) phase shift full bridge(PSFB) dc/dc converter of low output voltage and high output current applications. The proposed converter is operated as an asymmetric full bridge converter when the duty cycle is less than 50% and active clamp full bridge converter when the duty cycle is greater than 50%. As a result, since its freewheeling current is eliminated, the conduction loss is lower than that of the conventional ZVS PSFB dc/dc converter. Moreover, ZVS of all power switches can be ensured along a wide load ranges and output current ripple is very small. Therefore, high efficiency of the proposed converter can be achieved. Especially since its operation mode is changed to the active clamp full bridge converter during hold up time and can be operated with 50~100% duty ratio, it can produce the stable output voltage along wide input voltage range. The operational principles, theoretical analysis and design considerations are presented. To confirm the operation, validity and features of the proposed converter, experimental results from a 1.2kW($400V_{dc}/12V_{dc}$) prototype are presented.

Small-Signal Modeling and Closed-Loop Analysis of Charge Control Employed to Asymmetrical Half-Bridge Dc-to-Dc Converter (전하 제어 비대칭 하프 브리지 직류-직류 컨버터의 소신호 모델링과 페루프 특성 해석)

  • Lim Wonseok;Cha Honnyong;Choi Byungcho
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.1151-1153
    • /
    • 2004
  • In this paper, small-signal modeling and closed-loop performance of charge control employed to an asymmetrical half-bridge (ASHB) dc-to-dc converters are investigated. The charge control is selected as an alternative to the conventional voltage-mode control and peak current-mode (PCM) control, which have their respective limitations and problems when adapted to ASHB dc-to-dc converters. The current-loop dynamics of the charge control are presented in comparison with those of voltage-mode and PCM control. This paper demonstrates that the charge control offers better dynamic performance compared to voltage-mode control and superior noise characteristics compared to PCM control. The potential problem of charge control are also addressed.

  • PDF