• Title/Summary/Keyword: Breakdown initiation

Search Result 56, Processing Time 0.024 seconds

Discharge Characteristics in Soils Subjected to Lightning Impulse Voltages

  • Kim, Seung Min;Yoo, Yang-Woo;Lee, Bok-Hee
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.446-454
    • /
    • 2016
  • In this paper, we present experimental results of the soil discharge characteristics as a function of moisture content when a 1.2/50-㎲ lightning impulse voltage is applied. For this study, laboratory experiments were carried out based on factors affecting the transient behavior in soils. The electrical breakdown voltages in soils were measured for a 0-6% range of moisture content for sand and a 0 - 4% range of moisture content for gravel. A test cell with semi-spherical electrodes buried face-to-face in the middle of a cylindrical container was used. The distance separating the electrodes is 100 mm. As a result, the time-lag to breakdown in soils decreases as the amplitude of applied voltage increases. The time-lag to initiation of ionization streamer is decreased, with an increase in the moisture content. However, the formative time-lag is rarely changed. The behavior of soil discharges depend not only on the type of soil and its moisture content but also on the amplitude of the impulse voltage. When the test voltage is applied repeatedly, electrical breakdown occurs along different discrete paths, leading radially away from the injected electrode. i.e., the fact that the ionization streamers propagate in different paths from shot to shot was observed.

Effect of Ambient Temperature on the AC Electrical Treeing Phenomena in an Epoxy/Layered Silicate Nanocomposite

  • Park, Jae-Jun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.14 no.4
    • /
    • pp.221-224
    • /
    • 2013
  • Effects of ambient temperature on the ac electrical treeing and breakdown behaviors in an epoxy/layered silicate (1 wt%) were carried out in needle-plate electrode geometry. A layered silicate was exfoliated in an epoxy base resin,, using our ac electric field apparatus. To measure the treeing initiation and propagation, and the breakdown rate, constant alternating current (ac) of 10 kV (60 Hz) was applied to the specimen in a needle-plate electrode arrangement, at $30^{\circ}C$, $90^{\circ}C$ or $130^{\circ}C$ of insulating oil bath. At $30^{\circ}C$, the treeing initiation time and the breakdown time in the epoxy/layered silicate (1 wt%) system were 1.4 times higher than those of the neat epoxy resin. At $90^{\circ}C$ (lower than Tg), electrical treeing was initiated in 55 min, and propagated until 1,390 min at the speed of $0.35{\times}10^{-3}mm/min$, which was 4.4 times higher than that at $30^{\circ}C$; however, there was almost no further treeing propagation after 1,390 min. At $130^{\circ}C$ (higher than Tg), electrical treeing was initiated in 44 min, and propagated until 2,000 min at the speed of $0.96{\times}10^{-3}mm/min$. Typical branch type electrical treeing was obtained from the neat epoxy and epoxy/layered silicate at $30^{\circ}C$, while bush type treeing was observed out from the needle tip at $90^{\circ}C$ and $130^{\circ}C$.

A Modeling of Flame Initiation and Its Development in SI Engines (SI 기관에서 초기 화염의 생성 및 성장에 대한 모델링)

  • Song, Jeonghoon;Sunwoo, Myoungho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.2
    • /
    • pp.288-298
    • /
    • 1999
  • In spark ignited engines, the electrical spark not only sets the time for the onset of combustion but also is able to greatly influence the character of the initial flame growth and the subsequent combustion, and thereby can influence engine performance. The relative importance of the ignition energy is particularly high under lean or high residual gas or exhaust gas recirculation (EGR). In this study, a modeling of flame Initiation and its development is proposed. Submodels consist in representing of cylinder pressure and temperature, heat transfer to cylinder wall, and flame kernel heat transfer to ambient air and to spark plug electrodes. The breakdown process and the subsequent electrical power input initially control the kernel growth while intermediate growth is mainly dominated by diffusion or conduction. Then, the flame propagates by the chemical energy, and laminar and turbulent flame velocity.

Tree aging observation of XLPE by image processing (화상처리에 의한 XLPE의 트리열화관측)

  • 임장섭;김태성;길촌승
    • Electrical & Electronic Materials
    • /
    • v.8 no.5
    • /
    • pp.551-557
    • /
    • 1995
  • For the observation of treeing, a visual measurement with an optical microscope has been used to explain breakdown mechanism in high-voltage systems. The conventional directed visual method of tree aging observation is difficult to measure in short time processing, and it is impossible to analyze on tree degradation area, progressed direction, tree pattern, etc. By using an image processing technique, the tree features which appear immediately after the tree initiation as well as changes in the configuration of the tree can be easily measured and observed than using the conventional visual methods. In this paper, we have developed a tree observating system by using image processing for tree growth, degradation area and other treeing progress. As an experimental result, it can be concluded that the image processing method is a more effective alternative than directed visual observation method. As a matter of fact, it is possible to record the image of tree propagation immediately after its first appearance and explain the characteristics of tree growth froth the computer processing image.

  • PDF

A Study on Time Variation of ${\phi}-a$ Distribution Patterns due to Treeing Propagation in low Density Polyethylene (저밀도 폴리에틸렌에 있어서 트리잉 진전에 따른 ${\phi}-a$ 분포양상의 시간적 변화에 관한 연구)

  • Kang, Tae-O;Baek, Kwan-Hyun;Kim, Myung-Ho;Kim, Kyung-Hwan;Park, Jae-Jun;Kim, Jae-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 1991.11a
    • /
    • pp.427-430
    • /
    • 1991
  • In this study, in order to observe treeing of prebreakdown phenomena, time variation of acoustic emission properties due to initiation and propagation of tree in LDPE was investigated under AC voltage. The experimental results were as following, pulse number and average amplitude of AE were increased along with near breakdown rather than tree initiation, also, according to increasing of applied voltage, tree propagation was blunted, while pulse number and average amplitude of AE was promoted. In each applied voltage, ${\phi}-a$ distributions during propagation of tree were changed to special patterns, skewness S and kurtosis K reflected well time variation of ${\phi}-a$ distribution patterns. It is thought that initiation and propagation state of tree can be easily monitored, so long as time variation of pulse number and average amplitude of AE, skewness Sand kurtosis K of ${\phi}-a$ distribution are always monitored.

  • PDF

Effects of Air Void at the Steel-Concrete Interface on the Corrosion Initiation of Reinforcing Steel in Concrete under Chloride Exposure

  • Nam Jin-Gak;Hartt William H.;Kim Kijoon
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.5 s.89
    • /
    • pp.829-834
    • /
    • 2005
  • A series of reinforced G109 type specimens was fabricated and pended with a 15 weight percent NaCl solution. Mix design variables included 1) two cement alkalinities (equivalent alkalinities of 0.32 and 1.08), 2) w/c 0.50 and 3) two rebar surface conditions (as-received and wire-brushed). Potential and macro-cell current between top and bottom bars were monitored to determine corrosion initiation time. Once corrosion was initiated, the specimen was ultimately autopsied to perform visual inspection, and the procedure included determination of the number and size of air voids along the top half of the upper steel surface. This size determination was based upon a diameter measurement assuming the air voids to be half spheres or ellipse. The followings were reached based upon the visual inspection of G109 specimens that were autopsied to date. First, voids at the steel-concrete interface facilitated passive film breakdown and onset of localized corrosion. Based upon this, the initiation mechanism probably involved a concentration cell with contiguous concrete coated and bare steel serving as cathodes and anodes, respectively. Second, the corrosion tended to initiate at relatively large voids. Third, specimens with wire-brushed steel had a lower number of voids at the interface for both cement alkalinities, suggesting that air voids preferentially formed on the rough as-received surface compared to the smooth wire brushed one.

Effects of Injection and Temperature Variations on the Breakdown Pressure of Rocks (암석의 수압파쇄특성에 미치는 주입률과 온도의 영향)

  • 이찬구;송무영;최원학;장천중;이종옥
    • The Journal of Engineering Geology
    • /
    • v.5 no.2
    • /
    • pp.129-138
    • /
    • 1995
  • To elucidate the effects of flow rate on the hydraulic fracturing property of andesite, the hydraulic fracturing tests were conducted under three flow rates. As the tests are conducted with 1ml/min, 2ml/min and 3 ml/min under the constant axial load of 40 kN, the breakdown pressures of andesite seem to be constant as 163kg/cm$^2$. The hydraulic fracturing tests were carried out under the temperatures of five stages to elucidate the effects of temperature variation on hydraulic fracturing property of granite. As the tests are carried out under the constant flow rate of 1.7ml/min, with the axial load of 40kN, the breakdown pressures of granite are 168kg/cm$^2$ at room temperature, and 124kg/cm$^2$ at 20$0^{\circ}C$. The breakdown pressure decreases about 25% than that of room temperature with increasing the temperature. Under the controlled flow rates, the initiation pressures of the microcracks of granite are well coincided with the breakdown pressures and these results are also confirmed by the levels of acoustic emission.

  • PDF

Effects of Volatile Impurities on Dielectric Breakdown Characteristics of XLPE (XLPE의 절연파괴특성에 미치는 휘발성 불순물의 영향)

  • 조영신;심미자;김상욱
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.301-304
    • /
    • 1997
  • Effects of volatile impurities on deterioration characteristics of XLPE were investigated. Block type plate with needle-plane electrode and artificial void filled with $N_2$gas or humidity was subjected under high electric field. The dyed region by oxidation reaction around the artificial void filled with humidity was detected before tee initiation. Electrical tree was started from the tip of void filled with $N_2$gas earlier than humidity.

  • PDF

Properties of Plaster Mold for Open Cell Aluminum Foam (발포금속 제조를 위한 석고주형의 특성)

  • Kim, Ki-Young;Paik, Nam-Ik
    • Journal of Korea Foundry Society
    • /
    • v.21 no.4
    • /
    • pp.253-259
    • /
    • 2001
  • There are many methods to produce metal foams, which can be classified into three groups according to the state of the starting metal i.e. liquid or powder or solid. Three types of defects such as cell closing, cell deformation or breakdown and cell misrun are thought to be occurred when we make the open cell aluminum foams by precision casting. Filling ability of the mold slurry between preform is related with cell closing, mold collapsibility is related with cell deformation or breakdown, mold temperature and pouring pressure are related with cell misrun. These factors can be evaluated by measuring slurry fluidity, burnout strength and permeability of the mold. Properties of the plaster mold were evaluated to find optimum mold conditions for high quality open cell aluminum foam in this study. Permeability was almost zero independent of burnout conditions, however, crack initiation was found on the surface of all specimens one or two minutes after taking out from the furnace. Crack has grown and disappeared with time. This crack may facilitate the mold filling when molten metal is poured, because of the improved mold permeability. It was considered that crack initiation and disappearance was closely related with temperature difference between the surface and inner part. Knocking-out the mold is a difficult problem due to the small cell size, because continuous mesh structure of the metal foam is not strong. It is not easy to remove molding material after pouring. We can expect that water quenching can facilitate the knocking-out the mold after solidification without damaging cell structures. Collapsed particles after water quenching became bigger with the increase in time.

  • PDF

AN INTRODUCTION TO SEMICONDUCTOR INITIATION OF ELECTROEXPLOSIVE DEVICES

  • Willis K. E.;Whang, D. S.;Chang, S. T.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1994.11a
    • /
    • pp.21-26
    • /
    • 1994
  • Conventional electroexplosive devices (EED) commonly use a very small metal bridgewire to ignite explosive materials i.e. pyrotechnics, primary and secondary explosives. The use of semiconductor devices to replace “hot-wire” resistance heating elements in automotive safety systems pyrotechnic devices has been under development for several years. In a typical 1 amp/1 watt electroexplosive devices, ignition takes place a few milliseconds after a current pulse of at least 25 mJ is applied to the bridgewire. In contrast, as for a SCB devices, ignition takes place in a few tens of microseconds and only require approximately one-tenth the input energy of a conventional electroexplosive devices. Typically, when SCB device is driven by a short (20 $\mu\textrm{s}$), low energy pulse (less than 5 mJ), the SCB produces a hot plasma that ignites explosive materials. The advantages and disadvantages of this technology are strongly dependent upon the particular technology selected. To date, three distinct technologies have evolved, each of which utilizes a hot, silicon plasma as the pyrotechnic initiation element. These technologies are 1.) Heavily doped silicon as the resistive heating initiation mechanism, 2.) Tungsten enhanced silicon which utilizes a chemically vapor deposited layer of tungsten as the initiation element, and 3.) a junction diode, fabricated with standard CMOS processes, which creates the initial thermal environment by avalanche breakdown of the diode. This paper describes the three technologies, discusses the advantages and disadvantages of each as they apply to electroexplosive devises, and recommends a methodology for selection of the best device for a particular system environment. The important parameters in this analysis are: All-Fire energy, All-Fire voltage, response time, ease of integration with other semiconductor devices, cost (overall system cost), and reliability. The potential for significant cost savings by integrating several safety functions into the initiator makes this technology worthy of attention by the safety system designer.

  • PDF