• Title/Summary/Keyword: Braking algorithm

Search Result 120, Processing Time 0.019 seconds

A Study on the design of ABS ECU for a commercial vehicle(BUS) and its control algorithm (상용차용 ABS의 ECU 설계 및 제어 알고리즘에 관한 연구)

  • Lee, Ki-Chang;Kim, Moon-Sup;Jeon, Jung-Woo;Hwang, Don-Ha;Park, Doh-Young;Kim, Yong-Joo
    • Proceedings of the KIEE Conference
    • /
    • 2000.11d
    • /
    • pp.612-614
    • /
    • 2000
  • ABS(Anti-lock Braking System) is a device which prevents the lock-up of car wheels during emergency braking. It helps to maintain the steerability since the tire-road slip is controlled in an acceptable range. By maintaining the maximal frictional force during braking. ABS can reduce the braking distance. Recently, ABS is accepted as a standard equipment in vehicles, especially in commercial vehicles(bus and trucks). Commercial vehicles mostly use pneumatic pressure for braking. In this paper, ECU(Electronic Control Unit) for the anti-lock braking system of a commercial vehicle which is equipped with a full-air brake system and its control algorithms are presented.

  • PDF

A study on the Scheme of Extending Break Power Controller for Permanent Magnet Synchronous Motor(PMSM) using a Microprocessorr (마이크로프로세서를 이용한 영구자석형 동기전동기(PMSM) 제동력 확보 제어기 설계에 관한 연구)

  • Na, Seung-Kwon;Kim, Yeong-Wook;Choi, Gi-Ho;Hwang, Lark-Hoon
    • Journal of Advanced Navigation Technology
    • /
    • v.17 no.5
    • /
    • pp.524-544
    • /
    • 2013
  • In this paper, A tow system of miniature establishes each motor to individual 1C1M methods to control for a permanent magnet synchronous motors (PMSM) is constructed. You assume that is wiring having had the ability that can all absorb regenerative power which occurred when permanent magnet synchronous motors(PMSM) brake is all used to it, and to occur about agreement use scope expansion my electricity. To regenerative braking power securities of a PMSM and to stop of the bronzes my a control security, and that the electricity as you apply to vector control method and an speed sensor of controller to microprocessor, And you studied to speed, motor electricity energy control method to the algorithm and you brake a revival by regenerative braking power securities of a permanent magnet synchronous motors. It is proposed that motor control method to the algorithm you brake a revival by electricity braking power securities, you do to simulations regarding a momentum load and experiment.

Optimization of longitudinal viscous dampers for a freight railway cable-stayed bridge under braking forces

  • Yu, Chuanjin;Xiang, Huoyue;Li, Yongle;Pan, Maosheng
    • Smart Structures and Systems
    • /
    • v.21 no.5
    • /
    • pp.669-675
    • /
    • 2018
  • Under braking forces of a freight train, there are great longitudinal structural responses of a large freight railway cable-stayed bridge. To alleviate such adverse reactions, viscous dampers are required, whose parametric selection is one of important and arduous researches. Based on the longitudinal dynamics vehicle model, responses of a cable-stayed bridge are investigated under various cases. It shows that there is a notable effect of initial braking speeds and locations of a freight train on the structural responses. Under the most unfavorable braking condition, the parameter sensitivity analyses of viscous dampers are systematically performed. Meanwhile, a mixing method called BPNN-NSGA-II, combining the Back Propagation neural network (BPNN) and Non-Dominated Sorting Genetic Algorithm With Elitist Strategy (NSGA-II), is employed to optimize parameters of viscous dampers. The result shows that: 1. the relationships between the parameters of viscous dampers and the key longitudinal responses of the bridge are high nonlinear, which are completely different from each other; 2. the longitudinal displacement of the bridge main girder significantly decreases by the optimized viscous dampers.

A Study of ADS Slip Ratio Control using Solenoid Valve (전자밸브를 이용한 ABS 슬립율 제어에 관한 연구)

  • Choi, Jong-Hwan;Kim, Sung-Su;Yang, Soon-Yong;Park, Sung-Tae;Lee, Jin-Kul
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.676-681
    • /
    • 2001
  • ABS is a safety device, which adds hydraulic system to the existing brake system to prevent wheel from locking, so we can obtain maximum braking force on driving. The hydraulic system to control braking pressure consists of sol-flow type using solenoid valve, flow control valve or consists of sol-sol type using two solenoid valve. In this paper, the hydraulic system in ABS is composed of sol type using a 3port-2position solenoid valve, and vehicle system is composed of 1/4 vehicle model. And slip ratio is controlled using PWM (Pulse-Width-Modulation) control algorithm. Braking friction coefficient and tracking friction coefficient which are described by slip ratio's function have maximum value when slip ratio has its value from 0.1 to 0.3. And slip ratio is controlled constantly in this boundary value even in the variation of road's condition in some boundary.

  • PDF

RESISTANCE ESTIMATION OF A PWM-DRIVEN SOLENOID

  • Jung, H.G.;Hwang, J.Y.;Yoon, P.J.;Kim, J.H.
    • International Journal of Automotive Technology
    • /
    • v.8 no.2
    • /
    • pp.249-258
    • /
    • 2007
  • This paper proposes a method that can be used for the resistance estimation of a PWM (Pulse Width Modulation)-driven solenoid. By using estimated solenoid resistance, the PWM duty ratio was compensated to be proportional to the solenoid current. The proposed method was developed for use with EHB (Electro-Hydraulic Braking) systems, which are essential features of the regenerative braking system of many electric vehicles. Because the HU (Hydraulic Unit) of most EHB systems performs not only ABS/TCS/ESP (Electronic Stability Program) functions but also service braking function, the possible duration of continuous solenoid driving is so long that the generated heat can drastically change the level of solenoid resistance. The current model of the PWM-driven solenoid is further developed in this paper; from this a new resistance equation is derived. This resistance equation is solved by using an iterative method known as the FPT (fixed point theorem). Furthermore, by taking the average of the resistance estimates, it was possible to successfully eliminate the effect of measurement noise factors. Simulation results showed that the proposed method contained a sufficient pass-band in the frequency response. Experimental results also showed that adaptive solenoid driving which incorporates resistance estimations is able to maintain a linear relationship between the PWM duty ratio and the solenoid current in spite of a wide variety of ambient temperatures and continuous driving.

Absolute Vehicle Speed Estimation using Fuzzy Logic (퍼지로직을 이용한 차량절대속도 추정)

  • ;;J. K. Hedrick
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.1
    • /
    • pp.179-186
    • /
    • 2002
  • The absolute longitudinal speed of a vehicle is estimated by using vehicle acceleration data from an accelerometer and wheel speed data from standard 50-tooth antiknock braking system wheel speed sensors. An intuitive solution to this problem is, "When wheel slip is low, calculate absolute velocities from the wheel speeds; when wheel slip is high, calculate absolute velocity by integrating the accelerometer." Fuzzy logic is introduced to implement the above idea and a new algorithm of "modified velocities with step integration" is proposed. This algorithm is verified experimentally to estimate speed of a vehicle, and is also shown to estimate absolute longitudinal vehicle speed with a 6% worst-case error during a hard braking maneuver lasting three seconds.

An Experimental Investigation of a Collision Warning System for Automobiles using Hardware-in-the-Loop Simulations (차간거리 경보시스템의 HiLS 구현)

  • 송철기;김성하;이경수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.5
    • /
    • pp.222-227
    • /
    • 1998
  • Collision warning systems have been an active research and development area as the interests and demands for ASV's (Advanced Safety Vehicles) have increased. This paper presents an experimental investigation of a collision warning system for automobiles. A collision warning HiLS(Hardware-in-the-Loop Simulation) system has been designed and used to test the collision warning algorithm, radar sensors, and warning displays under realistic operating conditions in the laboratory. the collision warning algorithm is operated by a warning index, which is a function of the warning distance and the braking distance. The computer calculates velocities of the preceding vehicle and following vehicle, relative distance and relative velocity of the vehicles using vehicle simulation models. The relative distance and the relative velocity are applied to the vehicle simulator controlled by a DC motor.

  • PDF

A Study on Eddy Current Brake For a High-speed Railway Train (고속전철용 와전류제동장치 구동에 관한 연구)

  • Ryoo, Hong-Je;Woo, Myung-Ho;Kim, Jong-Soo;Kang, Kyung-Ho;Kang, Do-Hyun;Rim, Geun-Hie
    • Proceedings of the KIEE Conference
    • /
    • 1999.07f
    • /
    • pp.2745-2747
    • /
    • 1999
  • Recently, the eddy current braking system has an advantage as the high speed railway train is developed. Because it is independent on wheel-rail coefficient of adhesion and it can be used in adverse weather conditions by reason of non-acting on wheels. In this paper we designed down-scaled eddy current brake model and developed control algorithm to generate constant braking torque. Our algorithm is verified through experiments to generate constant torque.

  • PDF

Brake Force simulation of a High Speed Train Using a Dynamic Model (동적 모델에 의한 고속전철의 제동력 시뮬레이션)

  • Lee, Nam-Jin;Kang, Chul-Goo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.1
    • /
    • pp.46-53
    • /
    • 2002
  • The brake system of a high speed train has a crucial role for the safety of the train. To develop a safe brake system of the high speed train, it is necessary to understand the braking principle and phenomena of the total brake system and its subsystems. In this paper, we have suggested a mathematical model which includes car dynamics, interactions between cars, adhesive forces, brake blending algorithm, and the dynamics of each brake devices. Also, we have proposed a ready-time compensation algorithm of eddy-current brake system and a brake control logic on electric-pneumatic blending. A simulation study has shown the proposed models and algorithms are effective on the braking of the train.

Design of Vehicle Stability Control Algorithm Based on 3-DOF Vehicle Model (3자유도 차량모델 기반 차량 안정성 제어 알고리듬 설계)

  • Chung Taeyoung;Yi Kyongsu
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.1
    • /
    • pp.83-89
    • /
    • 2005
  • This paper presents vehicle stability control algorithm based on 3-DOF vehicle model. The brake control inputs have been directly derived from the sliding control law based on a three degree of freedom plane vehicle model with differential braking. The simulation has performed using a full nonlinear 3-dimensional vehicle model and the performance of the controller has been compared to that of a direct yaw moment controller. Simulation results show that the proposed controller can provide a vehicle with better performance than conventional controller with respect to brake actuation without compromising stability at critical driving conditions.