• 제목/요약/키워드: Braking Characteristics

검색결과 276건 처리시간 0.029초

고속철도 전기제동 특성에 관한 연구 (A Study on Electric Braking Characteristic of High-Speed Train)

  • 김석원;한영재;박찬경;김영국;김종영
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 춘계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.269-271
    • /
    • 2004
  • In this study, on-line measuring system were developed to verify performances and characteristics of electric braking system that is used in KTX(Korea Train eXpress) synthetically and efficiently Because KTX is commercial vehicle, effective measurement and evaluation of measuring signals were performed beyond the range of change for equipment components. KRRI(Korea Railroad Research Institute) described about running-braking measuring program, running-braking backup program and running-braking analysis program that were developed using a software called LabVIEW in this paper. Also, we analyzed the characteristics comparing experimental values with design values about braking distance, braking time, negative acceleration and braking effort in rheostatic braking and regenerative braking. In result, main performances and characteristics for electric braking system in KTX were verified.

  • PDF

도시철도 자동운전 차량의 정밀정차 향상을 위한 기법 연구 (A Technique Study for Improve the Precise Position Stopping of Automatic Train Operation (ATO) Train Vehicle in Urban Railway)

  • 마상견;허대정;김명환;송재청;박준호
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2011년도 정기총회 및 추계학술대회 논문집
    • /
    • pp.1049-1058
    • /
    • 2011
  • This paper suggests blending time adjusting method of braking command characteristics management and Set value test for optimizing of braking deceleration to enhance the precise position stopping. This method minimizes pneumatic-braking degree deviation by characteristics management, and secures braking stability at braking. By Set value test method, braking blending characteristics are analyzed accurately. And by optimal timing tuning at braking blending, It enhanced the precise position stopping with stabilization of deceleration To demonstrate the usefulness of these suggestion, I modeled for Deajeon Line #1. And through comparison with case of related companies, the proposed method which this paper suggested is proved to be superior to others.

  • PDF

항공기용 ABS 제동시스템의 노면 조건별 제동특성에 관한 시험적 연구 (Experimental Research on Braking Characteristics of Aircraft ABS Brake System with Ground Conditions)

  • 이미선
    • 한국항공운항학회지
    • /
    • 제25권2호
    • /
    • pp.18-24
    • /
    • 2017
  • Results of the experimental research are described in this thesis, which are about braking characteristics of aircraft ABS brake system with different ground conditions. Dynamo-tests were conducted with the state of the application aircraft condition and with two different ground conditions. The Braking characteristics on each ground condition were drawn from the results of occurrence of skid, braking distance and deceleration. The braking performance of the application aircraft could be anticipated and the efficient range of braking operation could be set with those results.

ABS 장착 자동차의 제어방식에 따른 제동특성에 관한 연구 (A Study on the Braking Characteristics of Control Methods for ABS mounted Vehicle)

  • 최종환;김승수;양순용;박성태;이진걸
    • 한국정밀공학회지
    • /
    • 제19권8호
    • /
    • pp.203-211
    • /
    • 2002
  • ABS (Anti-lock Braking System) is a safety device for preventing wheel locking in a sudden braking. It consists of hydraulic modulator, ECU(Electronic Control Unit) and angular velocity sensors. Its control methods are classified into three types; deceleration control, slip ratio control and deceleration/acceleration control. In this paper, ABS mounted vehicle is mathematically modeled and the proposed model is verified by actual cars experiments, and the braking characteristics of the control methods with pulse width modulation are compared and analyzed through computer simulations.

운행 자동차에 대한 정적 및 동적 제동력 검사 시스템의 제동력 특성 비교 (Comparison in Braking Force Characteristics for the Static and Dynamic Braking Force Inspection System about Vehicles in Service)

  • 오상엽
    • 한국자동차공학회논문집
    • /
    • 제23권3호
    • /
    • pp.344-351
    • /
    • 2015
  • Braking force inspection of vehicles in service is certainly one of the most important characteristics that affect vehicle safety. Up to now, in domestic country, the regular safety inspection of vehicles in service has been tested with a roller type brake test (a static braking force inspection system). But, in EU and USA etc. in recent years, it has been tested with a plate type brake test (a dynamic braking force inspection system). In this study, to compare the characteristics of above two test systems, the correlations for the results of braking force are evaluated statistically. As the results, in the case of main braking force, the range of the $R^2$ of the deviation for the left and right side is 0.5386 ~ 0.6231 in the rear axle and 0.0032 ~ 0.0052 in the front axle respectively, then the $R^2$ in the front axle is lower than that in the rear axle and the total variation is unexplained by the least-squares regression line statistically. Also, the p-value for the deviation of the left and right in the front axle is 0.4839 ~ 0.5755, then it has nonsignificant in the front axle. Therefore, the static braking force inspection system can not reflect the inertia force that there is a load transfer from the rear axle to the front axle during braking. Accordingly, it is necessary to adopt the dynamic braking force inspection system which can reflect the inertia force on the regular vehicle safety inspection in domestic country.

자동차 브레이크 제동시 디스크의 열적거동 및 응력 특성에 관한 연구 (A Study on Thermal Behavior and Stress Characteristics of Discs under Braking Conditions for Automobiles)

  • 백일현
    • Tribology and Lubricants
    • /
    • 제28권5호
    • /
    • pp.246-251
    • /
    • 2012
  • Disc brakes and brake linings are part of the braking system in automobiles; this system works due to the braking power between the disc and pad. Vehicle braking systems have complex environments due to the geometry of the disk and pad, the material properties, the braking conditions, etc. Braking energy is converted into thermal energy during the braking process, due to the frictional heat between the disc brake and pad. This heat is changed to a heat flux, which affects the thermal stress of the disc. The purpose of this study was to use the fluid dynamics software ANSYS CFX to investigate the inner flow characteristics of the air and the heat transfer of the disc, and to analyze the effects on the thermal stress of the disc brake.

A Study on Regenerative Braking for a Parallel Hybrid Electric Vehicle

  • 장성욱;예훈;김철수;김현수
    • Journal of Mechanical Science and Technology
    • /
    • 제15권11호
    • /
    • pp.1490-1498
    • /
    • 2001
  • In this paper, a regenerative braking algorithm is presented and performance of a hybrid electric vehicle (HEV) is investigated. The regenerative braking algorithm calculates the available regenera tive braking torque by considering the motor characteristics, the battery SOC and the CVT speed ratio. When the regenerative braking and the friction braking are applied simultaneously, the friction braking torque corresponding to the regenerative braking should be reduced by decreasing the hydraulic pressure at the front wheel. To implement the regenerative braking algorithm, a hydraulic braking module is designed. In addition, the HEV powertrain models including the internal combustion engine, electric motor, battery, CVT and the regenerative braking system are obtained using AMESim, and the regenerative braking performance is investigated by the simulation. Simulation results show that the proposed regenerative braking algorithm contributes to increasing the battery SOC which results in the improved fuel economy. To verify the regenerative braking algorithm, an experimental study is performed. It is found from the experimental results that the regenerative braking hydraulic module developed in this study generates the desired front wheel hydraulic pressure specified by the regenerative braking control algorithm.

  • PDF

제동시의 철도차량을 위한 동적모델 (Dynamic Modeling of a Railway Vehicle under Braking)

  • 박준혁;구병춘
    • 한국철도학회논문집
    • /
    • 제10권4호
    • /
    • pp.431-437
    • /
    • 2007
  • This paper describes the dynamic modeling of a railway vehicle when it is under braking force. It is important for the enhancement of braking performance to establish a proper dynamic model of a railway vehicle because the braking performance is affected by some dynamic forces generated by a railway vehicle when it undergoes braking. In this paper, a dynamic model for one vehicle is suggested to compute the dynamic behavior of a railway vehicle in the HILS(Hardware In-the-loop Simulation) system for the railway vehicle braking devices. To simplify the dynamic model, friction between a wheel and a rail is assumed that there exist only the static and the dynamic friction forces. Static friction coefficient is also assumed to be a function of the running speed. Some simulations are carried out with various braking forces, and the braking characteristics according to the change of the braking force are discussed. This study can provide some fundamental results to construct the HILS system for braking devices of a railway vehicle.

가스터빈 초기 구동용 시동시스템의 제동특성 연구 (Study on the Braking Characteristics of Starting System Used for Initial Spin-up of Gas Turbine)

  • 송주영;박준철;이기훈;김성현;남삼식
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2011년도 제37회 추계학술대회논문집
    • /
    • pp.379-382
    • /
    • 2011
  • 발전용 가스터빈 초기 구동용 시동시스템의 제동특성 평가를 위해 시동모터 단독 무부하 시험과 엔진 장착 부하시험을 수행하였다. 시동모터의 제동저항 용량 차이에 따른 제동 성능의 실험적 평가를 통해 가스터빈 시동과정 중 비상정지 상황에서 안정적인 제동특성을 확보하기 위한 정량적 데이터를 확보하였다. 본 연구를 통해 가스터빈의 시동 신뢰성과 안정성을 제고하기 위한 최적의 시동모터 제동저항 선정이 가능하게 되었다.

  • PDF

제동특성 예측을 위한 철도차량의 동적거동 모델링 (Dynamic Behavior Modeling of a Train Vehicle for The Prediction of Braking Characteristics)

  • 박준혁;구병춘
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2007년도 춘계학술대회 논문집
    • /
    • pp.1631-1638
    • /
    • 2007
  • In this paper, a modeling for the dynamic behavior of a train vehicle is suggested for the prediction of the braking characteristics. In the dynamic modeling, effects of the primary and secondary suspension elements are considered and interactions between two vehicles are also estimated. This study can offer some fundamental results for a further research to enhance the braking performance using active braking control.

  • PDF