• Title/Summary/Keyword: Brain disorders

Search Result 621, Processing Time 0.026 seconds

Cytokines in Depression and Anxiety Disorder (우울증, 불안장애에서의 사이토카인의 역할)

  • Song, Yoon-Jae;Kang, Eun-Ho;Yu, Bum-Hee
    • Anxiety and mood
    • /
    • v.4 no.2
    • /
    • pp.91-98
    • /
    • 2008
  • Depression and anxiety disorders are common psychiatric illnesses whose etiology remains partially understood. The etiology of depression and anxiety disorders is multi-factorial, and abnormalities in neurotransmitter, neuroendocrine system, and brain activation have been implicated in those conditions. However, the pathophysiology of depression and anxiety disorder is certainly not well understood, and some patients with depression or anxiety disorders do not respond to antidepressant therapy. Recently, immunological factors such as cytokines are known to be closely related to central nervous system as well as depression and anxiety disorders. This review highlights recent progress in understanding the function of cytokines in depression and anxiety disorders.

  • PDF

Understanding the Unfolded Protein Response (UPR) Pathway: Insights into Neuropsychiatric Disorders and Therapeutic Potentials

  • Pitna Kim
    • Biomolecules & Therapeutics
    • /
    • v.32 no.2
    • /
    • pp.183-191
    • /
    • 2024
  • The Unfolded Protein Response (UPR) serves as a critical cellular mechanism dedicated to maintaining protein homeostasis, primarily within the endoplasmic reticulum (ER). This pathway diligently responds to a variety of intracellular indicators of ER stress with the objective of reinstating balance by diminishing the accumulation of unfolded proteins, amplifying the ER's folding capacity, and eliminating slow-folding proteins. Prolonged ER stress and UPR irregularities have been linked to a range of neuropsychiatric disorders, including major depressive disorder, bipolar disorder, and schizophrenia. This review offers a comprehensive overview of the UPR pathway, delineating its activation mechanisms and its role in the pathophysiology of neuropsychiatric disorders. It highlights the intricate interplay within the UPR and its profound influence on brain function, synaptic perturbations, and neural developmental processes. Additionally, it explores evolving therapeutic strategies targeting the UPR within the context of these disorders, underscoring the necessity for precision and further research to effective treatments. The research findings presented in this work underscore the promising potential of UPR-focused therapeutic approaches to address the complex landscape of neuropsychiatric disorders, giving rise to optimism for improving outcomes for individuals facing these complex conditions.

Potential role of phytochemicals in brain plasticity: Focus on polyunsaturated fatty acids

  • Yook, Jang Soo;Lee, Minchul
    • Korean Journal of Exercise Nutrition
    • /
    • v.24 no.1
    • /
    • pp.14-18
    • /
    • 2020
  • [Purpose] Functional foods are thought to strongly influence the structure and function of the brain. Previous studies have reported that brain-boosting diets may enhance neuroprotective functions. Certain foods are particularly rich in nutrients like phytochemicals that are known to support brain plasticity; such foods are commonly referred to as brain foods. [Methods] In this review, we briefly explore the scientific evidence supporting the neuroprotective activity of a number of phytochemicals with a focus on phenols and polyunsaturated fatty acids such as flavonoid, olive oil, and omega-3 fatty acid. [Results] The aim of this study was to systematically examine the primary issues related to phytochemicals in the brain. These include (a) the brain-gut-microbiome axis; (b) the effects of phytochemicals on gut microbiome and their potential role in brain plasticity; (c) the role of polyunsaturated fatty acids in brain health; and (d) the effects of nutrition and exercise on brain function. [Conclusion] This review provides evidence supporting the view that phytochemicals from medicinal plants play a vital role in maintaining brain plasticity by influencing the brain-gut-microbiome axis. The consumption of brain foods may have neuroprotective effects, thus protecting against neurodegenerative disorders and promoting brain health.

Implications of Circadian Rhythm in Dopamine and Mood Regulation

  • Kim, Jeongah;Jang, Sangwon;Choe, Han Kyoung;Chung, Sooyoung;Son, Gi Hoon;Kim, Kyungjin
    • Molecules and Cells
    • /
    • v.40 no.7
    • /
    • pp.450-456
    • /
    • 2017
  • Mammalian physiology and behavior are regulated by an internal time-keeping system, referred to as circadian rhythm. The circadian timing system has a hierarchical organization composed of the master clock in the suprachiasmatic nucleus (SCN) and local clocks in extra-SCN brain regions and peripheral organs. The circadian clock molecular mechanism involves a network of transcription-translation feedback loops. In addition to the clinical association between circadian rhythm disruption and mood disorders, recent studies have suggested a molecular link between mood regulation and circadian rhythm. Specifically, genetic deletion of the circadian nuclear receptor Rev-$erb{\alpha}$ induces mania-like behavior caused by increased midbrain dopaminergic (DAergic) tone at dusk. The association between circadian rhythm and emotion-related behaviors can be applied to pathological conditions, including neurodegenerative diseases. In Parkinson's disease (PD), DAergic neurons in the substantia nigra pars compacta progressively degenerate leading to motor dysfunction. Patients with PD also exhibit non-motor symptoms, including sleep disorder and neuropsychiatric disorders. Thus, it is important to understand the mechanisms that link the molecular circadian clock and brain machinery in the regulation of emotional behaviors and related midbrain DAergic neuronal circuits in healthy and pathological states. This review summarizes the current literature regarding the association between circadian rhythm and mood regulation from a chronobiological perspective, and may provide insight into therapeutic approaches to target psychiatric symptoms in neurodegenerative diseases involving circadian rhythm dysfunction.

A review of the Implementation of Functional Brain Imaging Techniques in Auditory Research focusing on Hearing Loss (청각 연구에서 기능적 뇌 영상 기술 적용에 대한 고찰: 난청을 중심으로)

  • Hye Yoon Seol;Jaeyoung Shin
    • Journal of Biomedical Engineering Research
    • /
    • v.45 no.1
    • /
    • pp.26-36
    • /
    • 2024
  • Functional brain imaging techniques have been used to diagnose psychiatric disorders such as dementia, depression, and autism. Recently, these techniques have also been actively used to study hearing loss. The present study reviewed the application of the functional brain imaging techniques in auditory research, especially those focusing on hearing loss, over the past decade. EEG, fMRI, fNIRS, MEG, and PET have been utilized in auditory research, and the number of research studies using these techniques has been increasing. In particular, fMRI and EEG were the most frequently used technique in auditory research. EEG studies mostly used event-related designs to analyze the direct relationship between stimulus and the related response, and in fMRI studies, resting-state functional connectivity and block designs were utilized to analyze alterations in brain functionality in hearing-related areas. In terms of age, while studies involving children mainly focused on congenital and pre- and post-lingual hearing loss to analyze developmental characteristics with and without hearing loss, those involving adults focused on age-related hearing loss to investigate changes in the characteristics of the brain based on the presence of hearing loss and the use of a hearing device. Overall, ranging from EEG to PET, various functional brain imaging techniques have been used in auditory research, but it is difficult to perform a comprehensive analysis due to the lack of consistency in experimental designs, analysis methods, and participant characteristics. Thus, it is necessary to develop standardized research protocols to obtain high-quality clinical and research evidence.

Brain invasion of bovine coronavirus: molecular analysis of bovine coronavirus infection in calves with severe pneumonia and neurological signs

  • Semaha Gul Yilmaz;Ozge Aydin;Hasan Emre Tali;Gizem Karadag;Kivilcim Sonmez;Erhan Bayraktar;Aysun Yilmaz;Nuri Turan;Zihni Mutlu;Munir Iqbal;Jurgen A. Richt;Huseyin Yilmaz
    • Journal of Veterinary Science
    • /
    • v.25 no.4
    • /
    • pp.45.1-45.12
    • /
    • 2024
  • Importance: Although the role of bovine coronavirus (BCoV) in calf diarrhea and respiratory disorders is well documented, its contribution to neurological diseases is unclear. Objective: This study conducted virological investigations of calves showing diarrhea and respiratory and neurological signs. Methods: An outbreak of diarrhea, respiratory, and neurological disorders occurred among the 12 calves in July 2022 in Istanbul, Türkiye. Two of these calves exhibited neurological signs and died a few days after the appearance of symptoms. One of these calves was necropsied and analyzed using molecular and histopathological tests. Results: BCoV RNA was detected in the brain, lung, spleen, liver, and intestine of the calf that had neurological signs by real-time reverse transcription polymerase chain reaction. Immunostaining was also observed in the intestine and brain. A 622 bp S1 gene product was noted on gel electrophoresis only in the brain. Phylogenetic analysis indicated that the BCoV detected in this study had a high proximity to the BCoV strain GIb with 99.19% nucleotide sequence homology to the strains detected in Poland, Israel, Türkiye, and France. No distinct genetic lineages were observed when the brain isolate was compared with the respiratory and enteric strains reported to GenBank. In addition, the highest identity (98,72%) was obtained with the HECV 4408 and L07748 strains of human coronaviruses. Conclusions and Relevance: The strain detected in a calf brain belongs to the GIb-European lineage and shares high sequence homology with BCoV strains detected in Europe and Israel. In addition, the similarity between the human coronaviruses (4408 and L07748) raises questions about the zoonotic potential of the strains detected in this study.

The use of Amantadine in Traumatic Brain Injury Patients (외상성 뇌손상환자에서 Amantadine의 사용)

  • Jung, Han Yong;Kim, Yang Rae
    • Korean Journal of Biological Psychiatry
    • /
    • v.7 no.1
    • /
    • pp.55-63
    • /
    • 2000
  • Avariety of symptoms can occur following traumatic brain injury(TBI) or other types of acquired brain injury. These symptoms can include problems with short-term memory, attention, planning, problem solving, impulsivity, disinhibition, poor motivation, and other behavioral and cognitive deficit. These symptoms may respond to certain drugs, such as dopaminergic agents. Amantadine may protect patients from secondary neuronal damage after brain injury as a effect of NMDA receptor antagonists and may improve functioning of brain-injured patients as a dopaminergic agonist. Clinically, based on current evidence, amantadine may provide a potentially effective, safe, and inexpensive option for treating the cognitive, mood, and behavioral disorders of individuals with brain injury. The rationales for using amantadine are discussed, and pertinent literatures are reviewed.

  • PDF

Multi-scale U-SegNet architecture with cascaded dilated convolutions for brain MRI Segmentation

  • Dayananda, Chaitra;Lee, Bumshik
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2020.11a
    • /
    • pp.25-28
    • /
    • 2020
  • Automatic segmentation of brain tissues such as WM, GM, and CSF from brain MRI scans is helpful for the diagnosis of many neurological disorders. Accurate segmentation of these brain structures is a very challenging task due to low tissue contrast, bias filed, and partial volume effects. With the aim to improve brain MRI segmentation accuracy, we propose an end-to-end convolutional based U-SegNet architecture designed with multi-scale kernels, which includes cascaded dilated convolutions for the task of brain MRI segmentation. The multi-scale convolution kernels are designed to extract abundant semantic features and capture context information at different scales. Further, the cascaded dilated convolution scheme helps to alleviate the vanishing gradient problem in the proposed model. Experimental outcomes indicate that the proposed architecture is superior to the traditional deep-learning methods such as Segnet, U-net, and U-Segnet and achieves high performance with an average DSC of 93% and 86% of JI value for brain MRI segmentation.

  • PDF

Clinical Observation on East-West Integration Treatment in Stroke and Brain Disease (중풍 뇌 질환의 한 방향 협진에 관한 임상적 고찰)

  • Shin, Ae-sook;Lee, ln-whan;Kim, Na-hee;Kim, Hye-rni;Kim, Min-kyung;Sim, So-ra;Cho, Seung-yeon;Park, Seong-uk;Park, Jung-mi;Bae, Hyung-sup;Ko, Chang-nam
    • The Journal of the Society of Stroke on Korean Medicine
    • /
    • v.11 no.1
    • /
    • pp.9-17
    • /
    • 2010
  • Objectives : This study was aimed to evaluate the current status of East-West integrated treatment in stroke and brain disease and to discuss further plans. Methods : The medical records of patients who visited the stroke and brain disease center at Kyung Hee University, East-West Neo Medical Center from May 2006 to August 2010 were evaluated. The general characteristics of patients who underwent integrated treatment, trend in the number of cross referrals were initially evaluated. Later major disorders, the reasons of referrals and the number of visits in outpatients were analyzed. Results : 1. 3496 patients were referred from the eastern medical hospital to the western medical hospital and 2440 patients from the western medical hospital to the eastern medical hospital. The number of patients reached a peak alter the opening of the hospital and has decreased from then on. Referrals of female patients were more than those of male patients and patients over 50 years old were the most. 2. Admitted patients with stroke of chronic stage were most commonly referred from the eastern medical hospital to the western medical hospital and cerebral infarction was most common from the western medical hospital to the eastern medical hospital. Among the outpatients cerebral infarction topped from east to west, and stroke of chronic stage from west to east. 3. 36.6% of the patients from east to west received integrated treatment more than 3 times and 28.6% from west to east. Headache was the second most common reason to be referred from west to east and 36.7% of patients didn't continue to have either of the treatment and 30.3% received eastern treatment only, Conclusions: According to this study, chronic stroke management was successfully performed in the outpatient clinic in the form of East-West integration treatment. Further research on other diseases such as headache is recommended.

  • PDF

Effects of Yukmijihwangtang on the Biochemical Changes in Brain Tissue (육미지황탕(六味地黃湯)이 뇌조직(腦組織)의 생화학적(生化學的) 변화(變化)에 미치는 영향(影響))

  • Lee, Young-Goo;Lee, In;Moon, Byung-Soon
    • The Journal of Internal Korean Medicine
    • /
    • v.18 no.2
    • /
    • pp.94-111
    • /
    • 1997
  • The present experiment was designed to examine catecholamines, serotonine, amino acids, malondialdehyde and free radical scavenging activity, by administering Yukmijihwangtang extract of a variety of concentraction to senile brain. The results were summarized as followings: 1. Yukmijihwangtang significantly increased noradrenaline in the striatum, hypothalamus, midbrain and pons-medulla oblongota of the brain tissue of senile rats, and even though Yukmijihwangtang increased noradrenaline also in other brain tissue, there was no significance. 2. Yukmijihwangtang significantly increased dopamine in the striatum, hypothalamus and midbrain of the brain tissue of senile rats, and even though Yukmijihwangtang increased dopamine also in other brain tissue, there was no significance. 3. Yukmijihwangtang significantly increased serotonine in the pons- medulla oblongata and cerebellum of the brain tissue of senile rats, and even though Yukmijihwangtang increased serotonine also in the other brain tissue except hypothalamus and midbrain, there was no significance. 4. Yukmijihwangtang significantly increased amino acid in the brain tissue of senile rats. 5. Yukmijihwangtang significantly decresed malondialdehyde and free radical in the brain tissue of senile rats. According to the above results, Yukmijihwangtang is assumed to improve brain function by reacting on biochemical of the senile brain, and that Yukmijihwangtang can be used to treat regressive brain disease carrying symptoms of psychoactive disorders.

  • PDF