DOI QR코드

DOI QR Code

Potential role of phytochemicals in brain plasticity: Focus on polyunsaturated fatty acids

  • Yook, Jang Soo (Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology (KIST)) ;
  • Lee, Minchul (Department of Sports Medicine, CHA University)
  • Received : 2020.02.14
  • Accepted : 2020.03.16
  • Published : 2020.03.31

Abstract

[Purpose] Functional foods are thought to strongly influence the structure and function of the brain. Previous studies have reported that brain-boosting diets may enhance neuroprotective functions. Certain foods are particularly rich in nutrients like phytochemicals that are known to support brain plasticity; such foods are commonly referred to as brain foods. [Methods] In this review, we briefly explore the scientific evidence supporting the neuroprotective activity of a number of phytochemicals with a focus on phenols and polyunsaturated fatty acids such as flavonoid, olive oil, and omega-3 fatty acid. [Results] The aim of this study was to systematically examine the primary issues related to phytochemicals in the brain. These include (a) the brain-gut-microbiome axis; (b) the effects of phytochemicals on gut microbiome and their potential role in brain plasticity; (c) the role of polyunsaturated fatty acids in brain health; and (d) the effects of nutrition and exercise on brain function. [Conclusion] This review provides evidence supporting the view that phytochemicals from medicinal plants play a vital role in maintaining brain plasticity by influencing the brain-gut-microbiome axis. The consumption of brain foods may have neuroprotective effects, thus protecting against neurodegenerative disorders and promoting brain health.

Keywords

Acknowledgement

This work was supported by the industry academic cooperation foundation fund, CHA University Grant (CHA-201901490001). We would like to thank Editage (www.editage.co.kr) for English language editing. The authors declare no conflicts of interests, financial or otherwise.

References

  1. Medaglia JD, Pasqualetti F, Hamilton RH, Thompson-Schill SL, Bassett DS. Brain and cognitive reserve: Translation via network control theory. Neurosci Biobehav Rev. 2017;75:53-64. https://doi.org/10.1016/j.neubiorev.2017.01.016
  2. Kuhn HG, Dickinson-Anson H, Gage FH. Neurogenesis in the dentate gyrus of the adult rat: age-related decrease of neuronal progenitor proliferation. J Neurosci. 1996;16:2027-33. https://doi.org/10.1523/jneurosci.16-06-02027.1996
  3. Karten YJ, Olariu A, Cameron HA. Stress in early life inhibits neurogenesis in adulthood. Trends Neurosci. 2005;28:171-2. https://doi.org/10.1016/j.tins.2005.01.009
  4. Kempermann G, Kuhn HG, Gage FH. More hippocampal neurons in adult mice living in an enriched environment. Nature. 1997;386:493-5. https://doi.org/10.1038/386493a0
  5. Pontzer H, Brown MH, Raichlen DA, Dunsworth H, Hare B, Walker K, Luke A, Dugas LR, Durazo-Arvizu R, Schoeller D, Plange-Rhule J, Bovet P, Forrester TE, Lambert EV, Thompson ME, Shumaker RW, Ross SR. Metabolic acceleration and the evolution of human brain size and life history. Nature. 2016;533:390-2. https://doi.org/10.1038/nature17654
  6. Sese MA, Jimenez-Pavon D, Gilbert CC, Gonzalez-Gross M, Gottrand F, de Henauw S, Breidenassel C, Warnberg J, Widhalm K, Molnar D, Manios Y, Cuenca-Garcia M, Kafatos A, Moreno LA; HELENA Study Group. Eating behaviour, insulin resistance and cluster of metabolic risk factors in European adolescents. The HELENA study. Appetite. 2012;59:140-7. https://doi.org/10.1016/j.appet.2012.04.011
  7. Pluta R, Januszewski S, Ulamek-Koziol M. Mutual Two-Way Interactions of Curcumin and Gut Microbiota. Int J Mol Sci. 2020;21:E1055.
  8. Shortt C, Hasselwander O, Meynier A, Nauta A, Fernandez EN, Putz P, Rowland I, Swann J, Turk J, Vermeiren J, Antoine JM. Systematic review of the effects of the intestinal microbiota on selected nutrients and non-nutrients. Eur J Nutr. 2018;57:25-49. https://doi.org/10.1007/s00394-017-1546-4
  9. Markowiak P, Slizewska K. Effects of Probiotics, Prebiotics, and Synbiotics on Human Health. Nutrients. 2017;9:E1021.
  10. Smythies LE, Smythies JR. Microbiota, the immune system, black moods and the brain-melancholia updated. Front Hum Neurosci. 2014;8:720.
  11. Qu Q, Zeng F, Liu X, Wang QJ, Deng F. Fatty acid oxidation and carnitine palmitoyltransferase I: emerging therapeutic targets in cancer. Cell Death Dis. 2016;7:e2226. https://doi.org/10.1038/cddis.2016.132
  12. VanItallie TB. Biomarkers, ketone bodies, and the prevention of Alzheimer's disease. Metabolism. 2015;64(3 Suppl 1):S51-7. https://doi.org/10.1016/j.metabol.2014.10.033
  13. Koliada A, Syzenko G, Moseiko V, Budovska L, Puchkov K, Perederiy V, Gavalko Y, Dorofeyev A, Romanenko M, Tkach S, Sineok L, Lushchak O, Vaiserman A. Association between body mass index and Firmicutes/Bacteroidetes ratio in an adult Ukrainian population. BMC Microbiol. 2017;17:120. https://doi.org/10.1186/s12866-017-1027-1
  14. Molyneux RJ, Lee ST, Gardner DR, Panter KE, James LF. Phytochemicals: the good, the bad and the ugly? Phytochemistry. 2007;68:2973-85. https://doi.org/10.1016/j.phytochem.2007.09.004
  15. Silva RFM, Pogacnik L. Polyphenols from Food and Natural Products: Neuroprotection and Safety. Antioxidants (Basel). 2020;9:E61.
  16. Bensalem J, Dudonne S, Etchamendy N, Pellay H, Amadieu C, Gaudout D, Dubreuil S, Paradis ME, Pomerleau S, Capuron L, Hudon C, Laye S, Desjardins Y, Pallet V. Polyphenols From Grape and Blueberry Improve Episodic Memory in Healthy Elderly with Lower Level of Memory Performance: A Bicentric Double-Blind, Randomized, Placebo-Controlled Clinical Study. J Gerontol A Biol Sci Med Sci. 2019;74:996-1007. https://doi.org/10.1093/gerona/gly166
  17. Hornedo-Ortega R, Cerezo AB, de Pablos RM, Krisa S, Richard T, Garcia-Parrilla MC, Troncoso AM. Phenolic Compounds Characteristic of the Mediterranean Diet in Mitigating Microglia-Mediated Neuroinflammation. Front Cell Neurosci. 2018;12:373. https://doi.org/10.3389/fncel.2018.00373
  18. Khan MZ, He L. The role of polyunsaturated fatty acids and GPR40 receptor in brain. Neuropharmacology. 2017;113:639-51. https://doi.org/10.1016/j.neuropharm.2015.05.013
  19. Zhang Y, Zhuang P, He W, Chen JN, Wang WQ, Freedman ND, Abnet CC, Wang JB, Jiao JJ. Association of fish and long-chain omega-3 fatty acids intakes with total and cause-specific mortality: prospective analysis of 421 309 individuals. J Intern Med. 2018;284:399-417. https://doi.org/10.1111/joim.12786
  20. Bazinet RP, Laye S. Polyunsaturated fatty acids and their metabolites in brain function and disease. Nat Rev Neurosci. 2014;15:771-85. https://doi.org/10.1038/nrn3820
  21. Virtanen JK, Siscovick DS, Lemaitre RN, Longstreth WT, Spiegelman D, Rimm EB, King IB, Mozaffarian D. Circulating omega-3 polyunsaturated fatty acids and subclinical brain abnormalities on MRI in older adults: the Cardiovascular Health Study. J Am Heart Assoc. 2013;2:e000305. https://doi.org/10.1161/JAHA.113.000305
  22. Choi JE, Park Y. EPA and DHA, but not ALA, have antidepressant effects with 17beta-estradiol injection via regulation of a neurobiological system in ovariectomized rats. J Nutr Biochem. 2017;49:101-9. https://doi.org/10.1016/j.jnutbio.2017.07.012
  23. Patrick RP. Role of phosphatidylcholine-DHA in preventing APOE4-associated Alzheimer's disease. FASEB J. 2019;33:1554-64. https://doi.org/10.1096/fj.201801412R
  24. Pottala JV, Yaffe K, Robinson JG, Espeland MA, Wallace R, Harris WS. Higher RBC EPA + DHA corresponds with larger total brain and hippocampal volumes: WHIMS-MRI study. Neurology. 2014;82:435-42. https://doi.org/10.1212/WNL.0000000000000080
  25. Covas MI, Nyyssonen K, Poulsen HE, Kaikkonen J, Zunft HJ, Kiesewetter H, Gaddi A, de la Torre R, Mursu J, Baumler H, Nascetti S, Salonen JT, Fito M, Virtanen J, Marrugat J; EUROLIVE Study Group. The effect of polyphenols in olive oil on heart disease risk factors: a randomized trial. Ann Intern Med. 2006;145:333-41. https://doi.org/10.7326/0003-4819-145-5-200609050-00006
  26. Nagpal R, Shively CA, Appt SA, Register TC, Michalson KT, Vitolins MZ, Yadav H. Gut Microbiome Composition in Non-human Primates Consuming a Western or Mediterranean Diet. Front Nutr. 2018;5:28. https://doi.org/10.3389/fnut.2018.00028
  27. Omar SH. Cardioprotective and neuroprotective roles of oleuropein in olive. Saudi Pharm J. 2010;18:111-21. https://doi.org/10.1016/j.jsps.2010.05.005
  28. Pitozzi V, Jacomelli M, Catelan D, Servili M, Taticchi A, Biggeri A, Dolara P, Giovannelli L. Long-term dietary extra-virgin olive oil rich in polyphenols reverses age-related dysfunctions in motor coordination and contextual memory in mice: role of oxidative stress. Rejuvenation Res. 2012;15:601-12. https://doi.org/10.1089/rej.2012.1346
  29. Chen ML, Yi L, Zhang Y, Zhou X, Ran L, Yang J, Zhu JD, Zhang QY, Mi MT. Resveratrol Attenuates Trimethylamine-N-Oxide (TMAO)-Induced Atherosclerosis by Regulating TMAO Synthesis and Bile Acid Metabolism via Remodeling of the Gut Microbiota. mBio. 2016;7:e02210-5.
  30. Prieto PG, Cancelas J, Villanueva-Penacarrillo ML, Valverde I, Malaisse WJ. Effects of an olive oil-enriched diet on plasma GLP-1 concentration and intestinal content, plasma insulin concentration, and glucose tolerance in normal rats. Endocrine. 2005;26:107-15. https://doi.org/10.1385/ENDO:26:2:107
  31. Bak AM, Egefjord L, Gejl M, Steffensen C, Stecher CW, Smidt K, Brock B, Rungby J. Targeting amyloid-beta by glucagon-like peptide -1 (GLP-1) in Alzheimer's disease and diabetes. Expert Opin Ther Targets. 2011;15:1153-62. https://doi.org/10.1517/14728222.2011.600691
  32. Yannakoulia M, Kontogianni M, Scarmeas N. Cognitive health and Mediterranean diet: just diet or lifestyle pattern? Ageing Res Rev. 2015;20:74-8. https://doi.org/10.1016/j.arr.2014.10.003
  33. Luciano M, Corley J, Cox SR, Valdes Hernandez MC, Craig LC, Dickie DA, Karama S, McNeill GM, Bastin ME, Wardlaw JM, Deary IJ. Mediterranean-type diet and brain structural change from 73 to 76 years in a Scottish cohort. Neurology. 2017;88:449-55. https://doi.org/10.1212/wnl.0000000000003559
  34. De Nicolo S, Tarani L, Ceccanti M, Maldini M, Natella F, Vania A, Chaldakov GN, Fiore M. Effects of olive polyphenols administration on nerve growth factor and brain-derived neurotrophic factor in the mouse brain. Nutrition. 2013;29:681-7. https://doi.org/10.1016/j.nut.2012.11.007
  35. Kumar GP, Khanum F. Neuroprotective potential of phytochemicals. Pharmacogn Rev. 2012;6:81-90. https://doi.org/10.4103/0973-7847.99898
  36. Pal R, Singh SN, Chatterjee A, Saha M. Age-related changes in cardiovascular system, autonomic functions, and levels of BDNF of healthy active males: role of yogic practice. Age (Dordr). 2014;36:9683. https://doi.org/10.1007/s11357-014-9683-7
  37. Neeper SA, Goauctemez-Pinilla F, Choi J, Cotman C. Exercise and brain neurotrophins. Nature. 1995;373:109. https://doi.org/10.1038/373109a0
  38. Schmidt-Hieber C, Jonas P, Bischofberger J. Enhanced synaptic plasticity in newly generated granule cells of the adult hippocampus. Nature. 2004;429:184-7. https://doi.org/10.1038/nature02553
  39. Lee MC, Byun K, Kim JS, Lee H, Kim K. Trends in exercise neuroscience: raising demand for brain fitness. J Exerc Rehabil. 2019;15:176-9. https://doi.org/10.12965/jer.1938046.023