• 제목/요약/키워드: Brain Segmentation

검색결과 125건 처리시간 0.022초

Semi-automated Approach to Hippocampus Segmentation Using Snake from Brain MRI

  • Al Shidaifat, Ala'a Ddin;Al-Shdefat, Ramadan;Choi, Heung-Kook
    • 한국멀티미디어학회논문지
    • /
    • 제17권5호
    • /
    • pp.566-572
    • /
    • 2014
  • The hippocampus has been known as one of the most important structure related to many neurological disorders, such as Alzheimer's disease. This paper presents the snake model to segment hippocampus from brain MRI. The snake model or active contour model is widely used in medical image processing fields, especially image segmentation they look onto nearby edge, localizing them accurately. We applied a snake model on brain MRI. Then we compared our results with an active shape approach. The results show that hippocampus was successfully segmented by the snake model.

MR영상의 3차원 가시화 및 분석을 위한 뇌영역의 자동 분할 (Automatic Brain Segmentation for 3D Visualization and Analysis of MR Image Sets)

  • 김태우
    • 한국정보처리학회논문지
    • /
    • 제7권2호
    • /
    • pp.542-551
    • /
    • 2000
  • 본 논문에서는 MR 영상의 3차원 가시화 및 분석을 위한 단일 채널 MR 영상의 자동 뇌영역 분할 방법을 제안한다. 이 방법은 4단계의 2차원 및 3차원 처리에 의하여 뇌윤곽을 찾아낸다. 1,2단계에서는 곡선 적합을 이용한 자동 문턱치화에 의하여 머리마스크와 초기 뇌마스크를 생성한다. 3단계에서 입방보간으로 초기 뇌마스크의 3차원 볼륨을 생성하여 형태학적 연산, 연결부위 레이블링에 의하여 중기 뇌마스크를 생성한다. 최종적으로 곡선 적합에 의한 자동 문턱치화를 이용하여 뇌마스크를 정련한다. 제안한 알고리즘은 영상의 슬라이스 방향을 고려할 필요가 없고 영상이 뇌 전체를 포함하지 않아도 되며, T1, T2, PD, SPGR등 다양한 종류의 MR 영상의 자동적인 뇌영역의 분할에 유용하다. 실험에서 20세트 MR 영상에 대하여 수동분할을 기준으로 0.97 이상의 유지도를 보였다.

  • PDF

히스토그램에 기반한 다중스펙트럼 뇌 자기공명영상의 분할 (Segmentation of Multispectral Brain MRI Based on Histogram)

  • 윤옥경;김동휘
    • 한국산업정보학회논문지
    • /
    • 제8권4호
    • /
    • pp.46-54
    • /
    • 2003
  • 본 논문에서는 T1 강조 영상, T2 강조 영상 그리고 PD 영상의 히스토그램 특징을 상호 보완적으로 이용한 영상 분할 방법을 제안한다. 제안한 분할 알고리듬은 3단계로 이루어지는데, 첫 번째 단계에서는 T1과 T2, PD 영상으로부터 각각의 대뇌 영상을 추출하고, 두 번째 단계에서는 대뇌 영상의 히스토그램에서 봉우리 범위를 추출하고, 마지막 단계에서는 클러스터링을 이용하여 대뇌 영상을 분할한다. 본 논문에서는 봉우리 범위에 따른 분할결과와 수행 시간을 비교하고 기존의 분할 방법에 의한 실험 결과와 수행시간을 비교하여 보이는데 제안한 방법의 분할결과가 기존의 방법에 의한 결과보다 더 나은 결과를 보임을 확인할 수 있었다.

  • PDF

뇌 구조 분석을 위한 연속적인 퍼지 분할법과 구획화 방법의 개선 (Successive Fuzzy Classification and Improved Parcellation Method for Brain Anlaysis)

  • 윤의철;황진우;김재석;김재진;김인영;권준수;김선일
    • 대한의용생체공학회:의공학회지
    • /
    • 제22권5호
    • /
    • pp.377-384
    • /
    • 2001
  • 일반적으로 정신질환인 경우 뇌의 미세한 이상이 있는 것으로 알려져 있어 자기공명영상의 시각적 분석에서 뇌의 구조적 이상을 밝히는 데 한계가 있다. 따라서 특정 부위의 용적이나 모양의 이상을 통하여 정신질환의 뇌 구조적 이상을 연구하는 것이 일반적이다 이러한 경우 뇌 자기공명영상은 조직간의 경계가 불분명하여 뇌 구조 분석의 신뢰도는 조직별 분할의 정확성이 좌우한다 본 논문에서는 뇌 자기공명영상의 특성에 적합한 퍼지 분할법을 반복적으로 적용함으로써 분할 영상의 질을 개선하여 뇌 구조 분석의 신뢰도를 높이고, 사용자 편의성을 고려한 소프트웨어를 이용한 좌우 뇌섬엽 용적 측정을 통해 뇌 구조적 이상에 대한 보다 나은 분석 방법을 제시한다.

  • PDF

개미 군집 최적화 알고리즘을 이용한 뇌 자기공명 영상의 영역분할 (Region Segmentation from MR Brain Image Using an Ant Colony Optimization Algorithm)

  • 이명은;김수형;임준식
    • 정보처리학회논문지B
    • /
    • 제16B권3호
    • /
    • pp.195-202
    • /
    • 2009
  • 논문에서는 개미 군집 최적화 알고리즘을 이용하여 뇌 자기공명 영상의 백질 및 회백질 영역을 분할하는 방법을 제안한다. 확률적 조합 최적화에 적합한 알고리즘으로 알려진 개미 군집 최적화 알고리즘은 실제 개미들이 집에서 먹이를 찾아가는 동안의 방법을 기억하는 습성을 적용한 것이다. 논문에서 제안하는 방법은 개미가 먹이를 찾아가는 동안의 방법을 기억하는 습성처럼 영상에서 원하는 픽셀을 찾아갈 수 있다는 것이다. 원하는 픽셀을 찾은 개미들은 페로몬을 픽셀에 축적하게 되는데 이 페로몬은 이후에 지나가는 개미들이 다음 경로를 선택할 때 영향을 준다. 그리고 각각의 반복단계에서 상태전이 법칙에 따라 영상의 위치를 바꿔가면서 최종 목적지에 도달하게 되며, 마지막으로 페로몬 분포의 분석을 통해 영상에서 분할 된 결과를 얻는다. 제안한 알고리즘을 기존의 임계치 기반의 분할 알고리즘인 Otsu 방법, 메타휴리스틱 계열의 대표적인 방법인 유전자알고리즘, 퍼지방법, 원래의 개미 군집 최적화 알고리즘등과 비교하였다. 비교 실험을 통해 제안한 방법이 뇌의 특정 영역을 더 정확하게 분할함을 알 수 있었다.

Optimize KNN Algorithm for Cerebrospinal Fluid Cell Diseases

  • Soobia Saeed;Afnizanfaizal Abdullah;NZ Jhanjhi
    • International Journal of Computer Science & Network Security
    • /
    • 제24권2호
    • /
    • pp.43-52
    • /
    • 2024
  • Medical imaginings assume a important part in the analysis of tumors and cerebrospinal fluid (CSF) leak. Magnetic resonance imaging (MRI) is an image segmentation technology, which shows an angular sectional perspective of the body which provides convenience to medical specialists to examine the patients. The images generated by MRI are detailed, which enable medical specialists to identify affected areas to help them diagnose disease. MRI imaging is usually a basic part of diagnostic and treatment. In this research, we propose new techniques using the 4D-MRI image segmentation process to detect the brain tumor in the skull. We identify the issues related to the quality of cerebrum disease images or CSF leakage (discover fluid inside the brain). The aim of this research is to construct a framework that can identify cancer-damaged areas to be isolated from non-tumor. We use 4D image light field segmentation, which is followed by MATLAB modeling techniques, and measure the size of brain-damaged cells deep inside CSF. Data is usually collected from the support vector machine (SVM) tool using MATLAB's included K-Nearest Neighbor (KNN) algorithm. We propose a 4D light field tool (LFT) modulation method that can be used for the light editing field application. Depending on the input of the user, an objective evaluation of each ray is evaluated using the KNN to maintain the 4D frequency (redundancy). These light fields' approaches can help increase the efficiency of device segmentation and light field composite pipeline editing, as they minimize boundary artefacts.

알렌 마우스 브레인 아틀라스를 이용한 반자동 신경섬유지도 분석 : 여기수와 신호대잡음비간의 DTI 획득 비교 (Semi-automated Tractography Analysis using a Allen Mouse Brain Atlas : Comparing DTI Acquisition between NEX and SNR)

  • 임상진;백현만
    • 한국방사선학회논문지
    • /
    • 제14권2호
    • /
    • pp.157-168
    • /
    • 2020
  • 자기공명영상(Magnetic Resonance Image)을 이용한 구조적 연구 방법에서 뇌 구조 세분화 방법은 최근 빠르게 발전하여 구조 이미지의 자동 분할을 위한 유능한 방법론이 되었다. 특히 아틀라스 정보를 이미지에 등록해 피사체의 이미지로 전달하는 분할(Segmentation) 방법은 아틀라스(Atlas)의 정확도에 편향되기 때문에 높은 정확도를 갖고 있는 아틀라스가 필요하게 된다. 알렌 마우스 뇌 아틀라스(Allen Mouse Brain Atlas)는 마우스의 아틀라스 중에서 높은 정확도를 갖고 있어 다양한 분야에서 사용되고 있으며, 신경섬유지도(Tractography)에 필수적인 마우스 뇌구조의 정확한 좌표와 분할 정보를 제공할 수 있다. 또한 기능적 연구 방법인 뇌의 백질 경로를 재구성하는 확산텐서영상(Diffusion Tensor Image)에 대한 확률론적 신경섬유지도를 사용하여 포괄적인 뉴런 네트워크를 매핑 하였다. 인간의 뇌 연구 결과와 마우스의 뇌 연구 결과는 비교분석 할 수 있어 인간에게 적용하기 어려운 실험들을 질환이 모델링된 마우스를 통해 결과를 얻어 임상적으로 이용이 가능하기 때문에 마우스 실험의 중요성이 올라가고 있다. 하지만 마우스를 이용한 연구에서 인간과 마우스의 뇌 크기 차이로 인한 문제가 있어 동등한 영상의 질을 달성하려면 다양한 조건이 필요하게 되며, 그중 대표적으로 충분히 긴 스캔시간이 필요하게 된다. 충분히 긴 스캔시간을 확보하기 위해 본 연구에서는 마우스의 뇌를 샘플화시켜 Ex-vivo 실험이 진행되었으며, 마우스 커넥톰(Connectome) 매핑에 대한 참조를 제공하기 위해 이 연구는 아틀라스 정규화 도구인 ANTx와 확산 텐서 영상을 분석할 도구인 FSL을 사용하여 마우스 뇌의 반자동 분할 및 신경섬유지도 분석 파이프라인을 제시하여 다양한 마우스 모델에 적용하고자 했다. 또한, 신경섬유지도 분석을 위해 획득하는 확산텐서영상의 유용한 신호대 잡음비를 결정하기 위해 다양한 여기수의 영상을 획득해 비교분석하였다.

Hydrocephalus: Ventricular Volume Quantification Using Three-Dimensional Brain CT Data and Semiautomatic Three-Dimensional Threshold-Based Segmentation Approach

  • Hyun Woo Goo
    • Korean Journal of Radiology
    • /
    • 제22권3호
    • /
    • pp.435-441
    • /
    • 2021
  • Objective: To evaluate the usefulness of the ventricular volume percentage quantified using three-dimensional (3D) brain computed tomography (CT) data for interpreting serial changes in hydrocephalus. Materials and Methods: Intracranial and ventricular volumes were quantified using the semiautomatic 3D threshold-based segmentation approach for 113 brain CT examinations (age at brain CT examination ≤ 18 years) in 38 patients with hydrocephalus. Changes in ventricular volume percentage were calculated using 75 serial brain CT pairs (time interval 173.6 ± 234.9 days) and compared with the conventional assessment of changes in hydrocephalus (increased, unchanged, or decreased). A cut-off value for the diagnosis of no change in hydrocephalus was calculated using receiver operating characteristic curve analysis. The reproducibility of the volumetric measurements was assessed using the intraclass correlation coefficient on a subset of 20 brain CT examinations. Results: Mean intracranial volume, ventricular volume, and ventricular volume percentage were 1284.6 ± 297.1 cm3, 249.0 ± 150.8 cm3, and 19.9 ± 12.8%, respectively. The volumetric measurements were highly reproducible (intraclass correlation coefficient = 1.0). Serial changes (0.8 ± 0.6%) in ventricular volume percentage in the unchanged group (n = 28) were significantly smaller than those in the increased and decreased groups (6.8 ± 4.3% and 5.6 ± 4.2%, respectively; p = 0.001 and p < 0.001, respectively; n = 11 and n = 36, respectively). The ventricular volume percentage was an excellent parameter for evaluating the degree of hydrocephalus (area under the receiver operating characteristic curve = 0.975; 95% confidence interval, 0.948-1.000; p < 0.001). With a cut-off value of 2.4%, the diagnosis of unchanged hydrocephalus could be made with 83.0% sensitivity and 100.0% specificity. Conclusion: The ventricular volume percentage quantified using 3D brain CT data is useful for interpreting serial changes in hydrocephalus.

Comparison of Segmentation based on Threshold and KCMeans Method

  • R.Spurgen Ratheash;M.Mohmed Sathik
    • International Journal of Computer Science & Network Security
    • /
    • 제24권9호
    • /
    • pp.93-96
    • /
    • 2024
  • The segmentation, detection, and extraction of infected tumour area from magnetic resonance (MR) images are a primary concern but a tedious and time taking task performed by radiologists or clinical experts, and their accuracy depends on their experience only. So, the use of computer aided technology becomes very necessary to overcome these limitations. In this study, to improve the performance and reduce the complexity involves in the medical image segmentation process, we have investigated many algorithm methods are available in medical imaging amongst them the Threshold technique brain tumour segmentation process gives an accurate result than other methods for MR images. The proposed method compare with the K-means clustering methods, it gives a cluster of images. The experimental results of proposed technique have been evaluated and validated for performance and quality analysis on magnetic resonance brain images, based on accuracy, process time and similarity of the segmented part. The experimental results achieved more accuracy, less running time and high resolution.

CAD Scheme To Detect Brain Tumour In MR Images using Active Contour Models and Tree Classifiers

  • Helen, R.;Kamaraj, N.
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권2호
    • /
    • pp.670-675
    • /
    • 2015
  • Medical imaging is one of the most powerful tools for gaining information about internal organs and tissues. It is a challenging task to develop sophisticated image analysis methods in order to improve the accuracy of diagnosis. The objective of this paper is to develop a Computer Aided Diagnostics (CAD) scheme for Brain Tumour detection from Magnetic Resonance Image (MRI) using active contour models and to investigate with several approaches for improving CAD performances. The problem in clinical medicine is the automatic detection of brain Tumours with maximum accuracy and in less time. This work involves the following steps: i) Segmentation performed by Fuzzy Clustering with Level Set Method (FCMLSM) and performance is compared with snake models based on Balloon force and Gradient Vector Force (GVF), Distance Regularized Level Set Method (DRLSE). ii) Feature extraction done by Shape and Texture based features. iii) Brain Tumour detection performed by various tree classifiers. Based on investigation FCMLSM is well suited segmentation method and Random Forest is the most optimum classifier for this problem. This method gives accuracy of 97% and with minimum classification error. The time taken to detect Tumour is approximately 2 mins for an examination (30 slices).