Al Shidaifat, Ala'a Ddin;Al-Shdefat, Ramadan;Choi, Heung-Kook
한국멀티미디어학회논문지
/
제17권5호
/
pp.566-572
/
2014
The hippocampus has been known as one of the most important structure related to many neurological disorders, such as Alzheimer's disease. This paper presents the snake model to segment hippocampus from brain MRI. The snake model or active contour model is widely used in medical image processing fields, especially image segmentation they look onto nearby edge, localizing them accurately. We applied a snake model on brain MRI. Then we compared our results with an active shape approach. The results show that hippocampus was successfully segmented by the snake model.
본 논문에서는 MR 영상의 3차원 가시화 및 분석을 위한 단일 채널 MR 영상의 자동 뇌영역 분할 방법을 제안한다. 이 방법은 4단계의 2차원 및 3차원 처리에 의하여 뇌윤곽을 찾아낸다. 1,2단계에서는 곡선 적합을 이용한 자동 문턱치화에 의하여 머리마스크와 초기 뇌마스크를 생성한다. 3단계에서 입방보간으로 초기 뇌마스크의 3차원 볼륨을 생성하여 형태학적 연산, 연결부위 레이블링에 의하여 중기 뇌마스크를 생성한다. 최종적으로 곡선 적합에 의한 자동 문턱치화를 이용하여 뇌마스크를 정련한다. 제안한 알고리즘은 영상의 슬라이스 방향을 고려할 필요가 없고 영상이 뇌 전체를 포함하지 않아도 되며, T1, T2, PD, SPGR등 다양한 종류의 MR 영상의 자동적인 뇌영역의 분할에 유용하다. 실험에서 20세트 MR 영상에 대하여 수동분할을 기준으로 0.97 이상의 유지도를 보였다.
본 논문에서는 T1 강조 영상, T2 강조 영상 그리고 PD 영상의 히스토그램 특징을 상호 보완적으로 이용한 영상 분할 방법을 제안한다. 제안한 분할 알고리듬은 3단계로 이루어지는데, 첫 번째 단계에서는 T1과 T2, PD 영상으로부터 각각의 대뇌 영상을 추출하고, 두 번째 단계에서는 대뇌 영상의 히스토그램에서 봉우리 범위를 추출하고, 마지막 단계에서는 클러스터링을 이용하여 대뇌 영상을 분할한다. 본 논문에서는 봉우리 범위에 따른 분할결과와 수행 시간을 비교하고 기존의 분할 방법에 의한 실험 결과와 수행시간을 비교하여 보이는데 제안한 방법의 분할결과가 기존의 방법에 의한 결과보다 더 나은 결과를 보임을 확인할 수 있었다.
일반적으로 정신질환인 경우 뇌의 미세한 이상이 있는 것으로 알려져 있어 자기공명영상의 시각적 분석에서 뇌의 구조적 이상을 밝히는 데 한계가 있다. 따라서 특정 부위의 용적이나 모양의 이상을 통하여 정신질환의 뇌 구조적 이상을 연구하는 것이 일반적이다 이러한 경우 뇌 자기공명영상은 조직간의 경계가 불분명하여 뇌 구조 분석의 신뢰도는 조직별 분할의 정확성이 좌우한다 본 논문에서는 뇌 자기공명영상의 특성에 적합한 퍼지 분할법을 반복적으로 적용함으로써 분할 영상의 질을 개선하여 뇌 구조 분석의 신뢰도를 높이고, 사용자 편의성을 고려한 소프트웨어를 이용한 좌우 뇌섬엽 용적 측정을 통해 뇌 구조적 이상에 대한 보다 나은 분석 방법을 제시한다.
논문에서는 개미 군집 최적화 알고리즘을 이용하여 뇌 자기공명 영상의 백질 및 회백질 영역을 분할하는 방법을 제안한다. 확률적 조합 최적화에 적합한 알고리즘으로 알려진 개미 군집 최적화 알고리즘은 실제 개미들이 집에서 먹이를 찾아가는 동안의 방법을 기억하는 습성을 적용한 것이다. 논문에서 제안하는 방법은 개미가 먹이를 찾아가는 동안의 방법을 기억하는 습성처럼 영상에서 원하는 픽셀을 찾아갈 수 있다는 것이다. 원하는 픽셀을 찾은 개미들은 페로몬을 픽셀에 축적하게 되는데 이 페로몬은 이후에 지나가는 개미들이 다음 경로를 선택할 때 영향을 준다. 그리고 각각의 반복단계에서 상태전이 법칙에 따라 영상의 위치를 바꿔가면서 최종 목적지에 도달하게 되며, 마지막으로 페로몬 분포의 분석을 통해 영상에서 분할 된 결과를 얻는다. 제안한 알고리즘을 기존의 임계치 기반의 분할 알고리즘인 Otsu 방법, 메타휴리스틱 계열의 대표적인 방법인 유전자알고리즘, 퍼지방법, 원래의 개미 군집 최적화 알고리즘등과 비교하였다. 비교 실험을 통해 제안한 방법이 뇌의 특정 영역을 더 정확하게 분할함을 알 수 있었다.
International Journal of Computer Science & Network Security
/
제24권2호
/
pp.43-52
/
2024
Medical imaginings assume a important part in the analysis of tumors and cerebrospinal fluid (CSF) leak. Magnetic resonance imaging (MRI) is an image segmentation technology, which shows an angular sectional perspective of the body which provides convenience to medical specialists to examine the patients. The images generated by MRI are detailed, which enable medical specialists to identify affected areas to help them diagnose disease. MRI imaging is usually a basic part of diagnostic and treatment. In this research, we propose new techniques using the 4D-MRI image segmentation process to detect the brain tumor in the skull. We identify the issues related to the quality of cerebrum disease images or CSF leakage (discover fluid inside the brain). The aim of this research is to construct a framework that can identify cancer-damaged areas to be isolated from non-tumor. We use 4D image light field segmentation, which is followed by MATLAB modeling techniques, and measure the size of brain-damaged cells deep inside CSF. Data is usually collected from the support vector machine (SVM) tool using MATLAB's included K-Nearest Neighbor (KNN) algorithm. We propose a 4D light field tool (LFT) modulation method that can be used for the light editing field application. Depending on the input of the user, an objective evaluation of each ray is evaluated using the KNN to maintain the 4D frequency (redundancy). These light fields' approaches can help increase the efficiency of device segmentation and light field composite pipeline editing, as they minimize boundary artefacts.
자기공명영상(Magnetic Resonance Image)을 이용한 구조적 연구 방법에서 뇌 구조 세분화 방법은 최근 빠르게 발전하여 구조 이미지의 자동 분할을 위한 유능한 방법론이 되었다. 특히 아틀라스 정보를 이미지에 등록해 피사체의 이미지로 전달하는 분할(Segmentation) 방법은 아틀라스(Atlas)의 정확도에 편향되기 때문에 높은 정확도를 갖고 있는 아틀라스가 필요하게 된다. 알렌 마우스 뇌 아틀라스(Allen Mouse Brain Atlas)는 마우스의 아틀라스 중에서 높은 정확도를 갖고 있어 다양한 분야에서 사용되고 있으며, 신경섬유지도(Tractography)에 필수적인 마우스 뇌구조의 정확한 좌표와 분할 정보를 제공할 수 있다. 또한 기능적 연구 방법인 뇌의 백질 경로를 재구성하는 확산텐서영상(Diffusion Tensor Image)에 대한 확률론적 신경섬유지도를 사용하여 포괄적인 뉴런 네트워크를 매핑 하였다. 인간의 뇌 연구 결과와 마우스의 뇌 연구 결과는 비교분석 할 수 있어 인간에게 적용하기 어려운 실험들을 질환이 모델링된 마우스를 통해 결과를 얻어 임상적으로 이용이 가능하기 때문에 마우스 실험의 중요성이 올라가고 있다. 하지만 마우스를 이용한 연구에서 인간과 마우스의 뇌 크기 차이로 인한 문제가 있어 동등한 영상의 질을 달성하려면 다양한 조건이 필요하게 되며, 그중 대표적으로 충분히 긴 스캔시간이 필요하게 된다. 충분히 긴 스캔시간을 확보하기 위해 본 연구에서는 마우스의 뇌를 샘플화시켜 Ex-vivo 실험이 진행되었으며, 마우스 커넥톰(Connectome) 매핑에 대한 참조를 제공하기 위해 이 연구는 아틀라스 정규화 도구인 ANTx와 확산 텐서 영상을 분석할 도구인 FSL을 사용하여 마우스 뇌의 반자동 분할 및 신경섬유지도 분석 파이프라인을 제시하여 다양한 마우스 모델에 적용하고자 했다. 또한, 신경섬유지도 분석을 위해 획득하는 확산텐서영상의 유용한 신호대 잡음비를 결정하기 위해 다양한 여기수의 영상을 획득해 비교분석하였다.
Objective: To evaluate the usefulness of the ventricular volume percentage quantified using three-dimensional (3D) brain computed tomography (CT) data for interpreting serial changes in hydrocephalus. Materials and Methods: Intracranial and ventricular volumes were quantified using the semiautomatic 3D threshold-based segmentation approach for 113 brain CT examinations (age at brain CT examination ≤ 18 years) in 38 patients with hydrocephalus. Changes in ventricular volume percentage were calculated using 75 serial brain CT pairs (time interval 173.6 ± 234.9 days) and compared with the conventional assessment of changes in hydrocephalus (increased, unchanged, or decreased). A cut-off value for the diagnosis of no change in hydrocephalus was calculated using receiver operating characteristic curve analysis. The reproducibility of the volumetric measurements was assessed using the intraclass correlation coefficient on a subset of 20 brain CT examinations. Results: Mean intracranial volume, ventricular volume, and ventricular volume percentage were 1284.6 ± 297.1 cm3, 249.0 ± 150.8 cm3, and 19.9 ± 12.8%, respectively. The volumetric measurements were highly reproducible (intraclass correlation coefficient = 1.0). Serial changes (0.8 ± 0.6%) in ventricular volume percentage in the unchanged group (n = 28) were significantly smaller than those in the increased and decreased groups (6.8 ± 4.3% and 5.6 ± 4.2%, respectively; p = 0.001 and p < 0.001, respectively; n = 11 and n = 36, respectively). The ventricular volume percentage was an excellent parameter for evaluating the degree of hydrocephalus (area under the receiver operating characteristic curve = 0.975; 95% confidence interval, 0.948-1.000; p < 0.001). With a cut-off value of 2.4%, the diagnosis of unchanged hydrocephalus could be made with 83.0% sensitivity and 100.0% specificity. Conclusion: The ventricular volume percentage quantified using 3D brain CT data is useful for interpreting serial changes in hydrocephalus.
International Journal of Computer Science & Network Security
/
제24권9호
/
pp.93-96
/
2024
The segmentation, detection, and extraction of infected tumour area from magnetic resonance (MR) images are a primary concern but a tedious and time taking task performed by radiologists or clinical experts, and their accuracy depends on their experience only. So, the use of computer aided technology becomes very necessary to overcome these limitations. In this study, to improve the performance and reduce the complexity involves in the medical image segmentation process, we have investigated many algorithm methods are available in medical imaging amongst them the Threshold technique brain tumour segmentation process gives an accurate result than other methods for MR images. The proposed method compare with the K-means clustering methods, it gives a cluster of images. The experimental results of proposed technique have been evaluated and validated for performance and quality analysis on magnetic resonance brain images, based on accuracy, process time and similarity of the segmented part. The experimental results achieved more accuracy, less running time and high resolution.
Medical imaging is one of the most powerful tools for gaining information about internal organs and tissues. It is a challenging task to develop sophisticated image analysis methods in order to improve the accuracy of diagnosis. The objective of this paper is to develop a Computer Aided Diagnostics (CAD) scheme for Brain Tumour detection from Magnetic Resonance Image (MRI) using active contour models and to investigate with several approaches for improving CAD performances. The problem in clinical medicine is the automatic detection of brain Tumours with maximum accuracy and in less time. This work involves the following steps: i) Segmentation performed by Fuzzy Clustering with Level Set Method (FCMLSM) and performance is compared with snake models based on Balloon force and Gradient Vector Force (GVF), Distance Regularized Level Set Method (DRLSE). ii) Feature extraction done by Shape and Texture based features. iii) Brain Tumour detection performed by various tree classifiers. Based on investigation FCMLSM is well suited segmentation method and Random Forest is the most optimum classifier for this problem. This method gives accuracy of 97% and with minimum classification error. The time taken to detect Tumour is approximately 2 mins for an examination (30 slices).
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.