• Title/Summary/Keyword: Brain PET

Search Result 197, Processing Time 0.021 seconds

The Effect of Adaptation to Sound Intensity on the Neural Metabolism in Auditory Pathway: Small Animal PET Study (소동물 [F-18]FDG 양전자단층촬영 기법을 이용한 청각신경에서의 소리크기에 대한 적응효과 연구)

  • Jang, Dong-Pyo
    • Journal of Biomedical Engineering Research
    • /
    • v.32 no.1
    • /
    • pp.55-60
    • /
    • 2011
  • Although sound intensity is considered as one of important factors in auditory processing, its neural mechanism in auditory neurons with limited dynamic range of firing rates is still unclear. In this study, we examined the effect of sound intensity adaptation on the change of glucose metabolism in a rat brain using [F-18] micro positron emission tomography (PET) neuroimaging technique. In the experiment, broadband white noise sound was given for 30 minutes after the [F-18]FDG injection in order to explore the functional adaptation of rat brain into the sound intensity levels. Nine rats were scanned with four different sound intensity levels: 40 dB, 60 dB, 80 dB, 100 dB sound pressure level (SPL) for four weeks. When glucose uptake during the adaptation of a high intensity sound level (100 dB SPL) was compared with that during adaptation to a low intensity level (40 dB SPL) in the experiment, the former induced a greater uptake at bilateral cochlear nucleus, superior olivary complexes and inferior colliculi in the auditory pathway. Expectedly, the metabolic activity in those areas linearly increased as the sound intensity level increased. In contrast, significant decrease interestingly occurred in the bilateral auditory cortices: The activities of auditory cortex proportionally decreased with higher sound intensities. It may reflect that the auditory cortex actively down-regulates neural activities when the sound gets louder.

A study of registration algorithm based on 'Chamfer Matching' and 'Mutual Information Maximization' for anatomical image and nuclear medicine functional image ('Chamfer Matching'과 'Mutual Information Maximization' 알고리즘을 이용한 해부학적 영상과 핵의학 기능영상의 정합 연구)

  • Yang, Hee-Jong;Juh, Ra-hyeong;Song, Ju-Young;Suh, Tae-Suk
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2004.11a
    • /
    • pp.104-107
    • /
    • 2004
  • In this study, using brain phantom for multi-modality imaging, we acquired CT, MR and PET images and performed registration of these anatomical images and nuclear medicine functional images. The algorithms and program applied for registration were Chamfer Matching and Mutual Information Maximization algorithm which have been using frequently in clinic and verified accuracy respectively. In result, both algorithms were useful methods for CT-MR, CT-PET and MR-PET. But Mutual Information Maximization was more effective algorithm for low resolution image as nuclear medicine functional image.

  • PDF

Electroencephalography for Early Detection of Alzheimer's Disease in Subjective Cognitive Decline

  • YongSoo Shim;Dong Won Yang;SeongHee Ho;Yun Jeong Hong;Jee Hyang Jeong;Kee Hyung Park;SangYun Kim;Min Jeong Wang;Seong Hye Choi;Seung Wan Kang
    • Dementia and Neurocognitive Disorders
    • /
    • v.21 no.4
    • /
    • pp.126-137
    • /
    • 2022
  • Background and Purpose: Early detection of subjective cognitive decline (SCD) due to Alzheimer's disease (AD) is important for clinical research and effective prevention and management. This study examined if quantitative electroencephalography (qEEG) could be used for early detection of AD in SCD. Methods: Participants with SCD from 6 dementia clinics in Korea were enrolled. 18F-florbetaben brain amyloid positron emission tomography (PET) was conducted for all the participants. qEEG was performed to measure power spectrum and source cortical activity. Results: The present study included 95 participants aged over 65 years, including 26 amyloid PET (+) and 69 amyloid PET (-). In participants with amyloid PET (+), relative power at delta band was higher in frontal (p=0.025), parietal (p=0.005), and occipital (p=0.022) areas even after adjusting for age, sex, and education. Source activities of alpha 1 band were significantly decreased in the bilateral fusiform and inferior temporal areas, whereas those of delta band were increased in the bilateral cuneus, pericalcarine, lingual, lateral occipital, precuneus, posterior cingulate, and isthmus areas. There were increased connections between bilateral precuneus areas but decreased connections between left rostral middle frontal area and bilateral frontal poles at delta band in participants with amyloid PET (+) showed. At alpha 1 band, there were decreased connections between bilateral entorhinal areas after adjusting for covariates. Conclusions: SCD participants with amyloid PET (+) showed increased delta and decreased alpha 1 activity. qEEG is a potential means for predicting amyloid pathology in SCD. Further longitudinal studies are needed to confirm these findings.

An Assessment of the Accuracy of 3 Dimensional Acquisition in F-18 fluorodeoxyglucose Brain PET Imaging (3차원 데이터획득 뇌 FDG-PET의 정확도 평가)

  • Lee, Jeong-Rim;Choi, Yong;Kim, Sang-Eun;Lee, Kyung-Han;Kim, Byung-Tae;Choi, Chang-Woon;Lim, Sang-Moo;Hong, Seong-Wun
    • The Korean Journal of Nuclear Medicine
    • /
    • v.33 no.3
    • /
    • pp.327-336
    • /
    • 1999
  • Purpose: To assess the quantitative accuracy and the clinical utility of 3D volumetric PET imaging with FDG in brain studies, 24 patients with various neurological disorders were studied. Materials and Methods: Each patient was injected with 370 MBq of 2-[$^{18}F$]fluoro-2-deoxy-D-glucose. After a 30 min uptake period, the patients were imaged for 30 min in 2 dimensional acquisition (2D) and subsequently for 10 min in 3 dimensional acquisition imaging (3D) using a GE $Advance^{TM}$ PET system, The scatter corrected 3D (3D SC) and non scatter-corrected 3D images were compared with 2D images by applying ROIs on gray and white matter, lesion and contralateral normal areas. Measured and calculated attenuation correction methods for emission images were compared to get the maximum advantage of high sensitivity of 3D acquisition. Results: When normalized to the contrast of 2D images, the contrasts of gray to white matter were $0.75{\pm}0.13$ (3D) and $0.95{\pm}0.12$ (3D SC). The contrasts of normal area to lesion were $0.83{\pm}0.05$ (3D) and $0.96{\pm}0.05$ (3D SC). Three nuclear medicine physicians judged 3D SC images to be superior to the 2D with regards to resolution and noise. Regional counts of calculated attenuation correction was not significantly different to that of measured attenuation correction. Conclusion: 3D PET images with the scatter correction in FDG brain studies provide quantitatively and qualitatively similar images to 2D and can be utilized in a routine clinical setting to reduce scanning time and patient motion artifacts.

  • PDF

Voxel-based Morphometry (VBM) Based Assessment of Gray Matter Loss in Medial Temporal Lobe Epilepsy: Comparison with FDG PET (화소기반 형태분석 방법을 이용한 내측측두엽 간질환자의 회백질 부피/농도 감소평가; FDG PET과의 비교)

  • Kang, Hye-Jin;Lee, Ho-Young;Lee, Jae-Sung;Kang, Eun-Joo;Lee, Sang-Gun;Chang, Kee-Hyun;Lee, Dong-Soo
    • The Korean Journal of Nuclear Medicine
    • /
    • v.38 no.1
    • /
    • pp.30-40
    • /
    • 2004
  • Purpose: The aims of this study were to find brain regions in which gray matter volume was reduced and to show the capability of voxel-based morphometry (VBM) analysis for lateralizing epileptogenic zones in medial temporal lobe epilepsy (mTLE). The findings were compared with fluorodeoxyglucose positron omission tomography (FDG PET). Materials and Methods: MR T1-weighted images of 12 left mTLE and 11 right mTLE patients were compared with those of 37 normal controls. Images were transformed to standard MNI space and averaged in order to create study-specific brain template. Each image was normalized to this local template and brain tissues were segmented. Modulation VBM analysis was performed in order to observe gray matter volume change. Gray matter was smoothed with a Gaussian kernel. After these preprocessing, statistical analysis was peformed using statistical parametric mapping software (SPM99). FDG PET images were compared with those of 22 normal controls using SPM. Results: Gray matter volume was significantly reduced in the left amygdala and hippocampus in left mTLE. In addition, volume of cerebellum, anterior cingulate, and fusiform gyrus in both sides and left insula was reduced. In right mTLE, volume was reduced significantly in right hippocampus. In contrast, FDG uptake was decreased in broad areas of left or right temporal lobes in left TLE and right TLE, respectively. Conclusions: Gray matter loss was found in the ipsilateral hippocampus by modulation VBM analysis in medial temporal lobe epilepsy. This VBM analysis might be useful in lateralizing the epileptogenic zones in medial temporal lobe epilepsy, while SPM analysis of FDG PET disclosed hypometabolic epileptogenic zones.

Usefulness of Brain Phantom Made by Fused Filament Fabrication Type 3D Printer (적층 제조형 방식의 3D 프린터로 제작한 뇌 팬텀의 유용성)

  • Lee, Yong-Ki;Ahn, Sung-Min
    • Journal of radiological science and technology
    • /
    • v.43 no.6
    • /
    • pp.453-460
    • /
    • 2020
  • The price of the Brain phantom (Hoffman 3D brain phantom) used in nuclear medicine is quite expensive, it is difficult to be purchased by a medical institution or an educational institution. Therefore, the purpose of present research is to produce a low-price 3D brain phantom and evaluate its usefulness by using a 3D printer capable of producing 3D structures. The New 3D brain phantom consisted of 36 slices 0.7 mm thick and 58 slices 1.5 mm thick. A 0.7 mm thick slice was placed between 1. 5 mm thick slices to produce a composite slice. ROI was set at the gray matter and white matter scanned with CT to measure and compare the HU, in order to verify the similarity between PLA which was used as the material for the New 3D brain phantom and acrylic which was used as the material for Hoffman 3D brain phantom. As a result of measuring the volume of each Phantom, the error rate was 3.2% and there was no difference in the signal intensity in five areas. However, there was a significant difference in the average values of HU which was measured at the gray and white matter to verify the similarity between PLA and acrylic. By reproducing the previous Hoffman 3D brain phantom with a 100 times less cost, I hope this research could contribute to be used as the fundamental data in the areas of 3D printer, nuclear medicine and molecular imaging and to increasing the distribution rate of 3D brain phantom.

The Evaluation for Attenuation Map using Low Dose in PET/CT System (PET/CT 시스템에서 감쇠지도를 만들기 위한 저선량 CT 평가)

  • Nam, So-Ra;Cho, Hyo-Min;Jung, Ji-Young;Lee, Chang-Lae;Lim, Han-Sang;Park, Hoon-Hee;Kim, Hee-Joung
    • Progress in Medical Physics
    • /
    • v.18 no.3
    • /
    • pp.134-138
    • /
    • 2007
  • The current PET/CT system with high quality CT images not only increases diagnostic value by providing anatomic localization, but also shortens the acquisition time for attenuation correction than primary PET system. All commercially available PET/CT system uses the CT scan for attenuation correction instead of the transmission scan using radioactive source such as $^{137}Cs,\;^{68}Ge$. However the CT scan may substantially increase the patient dose. The purpose of this study was to evaluate quality of PET images reconstructed by CT attenuation map using various tube currents. in this study, images were acquired for 3D Hoffman brain phantom and cylindrical phantom using GE DSTe PET/CT system. The emission data were acquired for 10 min using phantoms after injecting 44.03 MBq of $^{18}F-FDG$. The CT images for attenuation map were acquired by changing tube current from 10 mA to 95 mA with fixed exposure time of 8 sec and fixed tube voltage of 140 kVp. The PET images were reconstructed using these CT attenuation maps. Image quality of CT images was evaluated by measuring SD (standard deviation) of cylindrical phantom which was filled with water and $^{18}F-FDG$ solution. The PET images were evaluated by measuring the activity ratio between gray matter and white matter in Hoffman phantom images. SDs of CT images decrease by increasing tube current. When PET images were reconstructed using CT attenuation maps with various tube currents, the activity ratios between gray matter and white matter of PET images were almost same. These results indicated that the quality of the PET images using low dose CT data were comparable to the PET images using general dose CT data. Therefore, the use of low dose CT is recommended than the use of general dose CT, when the diagnostic high quality CT is not required. Further studies may need to be performed for other system, since this study is limited to the GE DSTe system used in this study.

  • PDF

Automated radiochemical synthesis of [18F]FET on TRACERlab FX2N module and its quality control

  • Dong Hyun Kim;Eun-bi Shin;Iljung Lee;Heejung Kim;Kyo Chul Lee;Kyeong Min Kim;Joo Hyun Kang;Sang Moo Lim
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.7 no.2
    • /
    • pp.147-152
    • /
    • 2021
  • C-11 Radiolabeled amino acid-based radiopharmaceuticals such as [11C]MET for brain tumor PET imaging have limitations due to their short half-life (20 min). F-18 radiolabeled amino acid derivatives have been developed to overcome for the short half-life, one of which is [18F]FET. Brain tumor imaging using [18F]FET showed high uptake in tumor region and no non-specific uptake in inflammatory tissue, which was useful in discriminating the difference between inflammation and tumor especially. In this study, [18F]FET was synthesized using an automatic synthesis module and quality tests were carried out including enantiomeric purity analysis with reference compounds. Radiochemical yield was 50.3 ± 4.9% (n=7, decay-corrected) with molar activity of 76 ± 17 GBq/mmol. The radiochemical purity of >99%. Enantiomeric purity of [18F]FET using chiral HPLC analysis showed >99%, which was confirmed by co-injection with the L-FET and D-FET authentic standards. [18F]FET was prepared with high radiochemical yield and molar activity including no racemate mixture.

Automatic Interpretation of F-18-FDG Brain PET Using Artificial Neural Network: Discrimination of Medial and Lateral Temporal Lobe Epilepsy (인공신경회로망을 이용한 뇌 F-18-FDG PET 자동 해석: 내.외측 측두엽간질의 감별)

  • Lee, Jae-Sung;Lee, Dong-Soo;Kim, Seok-Ki;Park, Kwang-Suk;Lee, Sang-Kun;Chung, June-Key;Lee, Myung-Chul
    • The Korean Journal of Nuclear Medicine
    • /
    • v.38 no.3
    • /
    • pp.233-240
    • /
    • 2004
  • Purpose: We developed a computer-aided classifier using artificial neural network (ANN) to discriminate the cerebral metabolic pattern of medial and lateral temporal lobe epilepsy (TLE). Materials and Methods: We studied brain F-18-FDG PET images of 113 epilepsy patients sugically and pathologically proven as medial TLE (left 41, right 42) or lateral TLE (left 14, right 16). PET images were spatially transformed onto a standard template and normalized to the mean counts of cortical regions. Asymmetry indices for predefined 17 mirrored regions to hemispheric midline and those for medial and lateral temporal lobes were used as input features for ANN. ANN classifier was composed of 3 independent multi-layered perceptrons (1 for left/right lateralization and 2 for medial/lateral discrimination) and trained to interpret metabolic patterns and produce one of 4 diagnoses (L/R medial TLE or L/R lateral TLE). Randomly selected 8 images from each group were used to train the ANN classifier and remaining 51 images were used as test sets. The accuracy of the diagnosis with ANN was estimated by averaging the agreement rates of independent 50 trials and compared to that of nuclear medicine experts. Results: The accuracy in lateralization was 89% by the human experts and 90% by the ANN classifier Overall accuracy in localization of epileptogenic zones by the ANN classifier was 69%, which was comparable to that by the human experts (72%). Conclusion: We conclude that ANN classifier performed as well as human experts and could be potentially useful supporting tool for the differential diagnosis of TLE.

New Trend of Pain Evaluation by Brain Imaging Devices (뇌기능 영상장치를 이용한 통증의 평가)

  • Lee Sung-Jin;Bai Sun-Joon
    • Science of Emotion and Sensibility
    • /
    • v.8 no.4
    • /
    • pp.365-374
    • /
    • 2005
  • Pain has at least two dimensions such as somatosensory qualities and affect and patients are frequently asked to score the intensity of their pain on a numerical pain rating scale. However, the use of a undimensional scale is questionable in view of the belief, overwhelmingly supported by clinical experience as well as by empirical evidence from multidimensional scaling and other sources, that pain has multidimensions such as sensory-discrimitive, motivational-affective and cognitive-evaluative The study of pain has recently received much attention, especially in understanding its neurophysiology by using new brain imaging techniques, such as positron emission tomography(PET) and functional magnetic resonance imaging (fMRI), both of which allow us to visualize brain function in vivo. Also the new brainimaging devices allow us to evaluate the patients pain status and plan To treat patients objectively. Base4 on our findings we presented what are the new brain imaging devices and the results of study by using brain imaging devices.

  • PDF