DOI QR코드

DOI QR Code

Automated radiochemical synthesis of [18F]FET on TRACERlab FX2N module and its quality control

  • Dong Hyun Kim (Korea Radioisotope Center for Pharmaceuticals, Korea Institute of Radiological & Medical Sciences) ;
  • Eun-bi Shin (Korea Radioisotope Center for Pharmaceuticals, Korea Institute of Radiological & Medical Sciences) ;
  • Iljung Lee (Korea Radioisotope Center for Pharmaceuticals, Korea Institute of Radiological & Medical Sciences) ;
  • Heejung Kim (Korea Radioisotope Center for Pharmaceuticals, Korea Institute of Radiological & Medical Sciences) ;
  • Kyo Chul Lee (Korea Radioisotope Center for Pharmaceuticals, Korea Institute of Radiological & Medical Sciences) ;
  • Kyeong Min Kim (Korea Radioisotope Center for Pharmaceuticals, Korea Institute of Radiological & Medical Sciences) ;
  • Joo Hyun Kang (Korea Radioisotope Center for Pharmaceuticals, Korea Institute of Radiological & Medical Sciences) ;
  • Sang Moo Lim (Korea Radioisotope Center for Pharmaceuticals, Korea Institute of Radiological & Medical Sciences)
  • Received : 2021.12.07
  • Accepted : 2021.12.28
  • Published : 2021.12.30

Abstract

C-11 Radiolabeled amino acid-based radiopharmaceuticals such as [11C]MET for brain tumor PET imaging have limitations due to their short half-life (20 min). F-18 radiolabeled amino acid derivatives have been developed to overcome for the short half-life, one of which is [18F]FET. Brain tumor imaging using [18F]FET showed high uptake in tumor region and no non-specific uptake in inflammatory tissue, which was useful in discriminating the difference between inflammation and tumor especially. In this study, [18F]FET was synthesized using an automatic synthesis module and quality tests were carried out including enantiomeric purity analysis with reference compounds. Radiochemical yield was 50.3 ± 4.9% (n=7, decay-corrected) with molar activity of 76 ± 17 GBq/mmol. The radiochemical purity of >99%. Enantiomeric purity of [18F]FET using chiral HPLC analysis showed >99%, which was confirmed by co-injection with the L-FET and D-FET authentic standards. [18F]FET was prepared with high radiochemical yield and molar activity including no racemate mixture.

Keywords

Acknowledgement

This study was supported by a grant of the Korea Institute of Radiological and Medical Sciences (KIRAMS), funded by Ministry of Science and ICT (MSIT), Republic of Korea. (No. 50539-2021)

References

  1. Shreve PD, Anzai Y, Wabl RL. Pitfalls in oncologic diagnosis with FDG PET imaging: physiologic and benign variants. Radiographics1999;19:61-77. https://doi.org/10.1148/radiographics.19.1.g99ja0761
  2. Vaalburg W, Coenen HH, Crouzel C, Elsinga PH, Langstrom B, Lemaire C, Meyer GJ. Amino acids for the measurement of protein synthesis in vivo by PET. Int J Rad Appl Instrum B. 1992;19:227-237. https://doi.org/10.1016/0883-2897(92)90011-M
  3. Terakawa Y, Tsuyuguchi N, Iwai Y, Yamanaka K, Higashiyama S. Diagnostic accuracy of 11C-Methionine PET for differentiation of recurrent brain tumors from radiation necrosis after radiotherapy. J Nucl Med 2008;49:694-699. https://doi.org/10.2967/jnumed.107.048082
  4. Ullrich RT, Kracht L, Brunn A, Herholz K, Frommolt P, Miletic H, Deckert M, Heiss WD, Jacobs AH. Methyl-L-11C-methionine PET as a diagnostic marker for malignant progression in patients with glioma. J Nucl Med 2009;50:1962-1968. https://doi.org/10.2967/jnumed.109.065904
  5. Kobayashi K, Hirata K, Yamaguchi S, Manabe O, Terasaka S, Kobayashi H, Shiga T, Hattori N, Tanaka S, Kuge Y, Tamaki N. Prognostic value of volume-based measurements on (11)C-methionine PET in glioma patients. Eur J Nucl Med Mol Imaging 2015;42:1071-1080. https://doi.org/10.1007/s00259-015-3046-1
  6. Shoup TM, Olson J, Hoffman JM, Votaw J, Eshima D, Eshima L, Camp VM, Stabin M, Votaw D, Goodman MM. Synthesis and evaluation of [18F]1-amino-3-fluorocyclobutane-1-carboxylic acid to image brain tumors. Journal of nuclear medicine: J Nucl Med 1999;40:331-338.
  7. Wester HJ, Weber MW, Heiss P, Senekowitsch-Schmidtke R, Schwaiger M, Stocklin G, Synthesis and radiopharmacology of O-(2-[18F]fluoroethyl)-L-tyrosine for tumor imaging J Nucl Med 1999;40:205-212.
  8. VanBrocklin HF, Blagoev M, Hoepping A, O'Neil JP, Klose M, Schubiger PA, Ametamey S, A new precursor for the preparation of 6-[18F]Fluoro-L-m-tyrosine ([18F]FMT): efficient synthesis and comparison of radiolabeling. Appl Radiat Isot 2004;61:1289-1294. https://doi.org/10.1016/j.apradiso.2004.04.008
  9. Lahoutte T, Caveliers V, Camargo SM, Franca R, Ramadan T, Veljkovic E, Mertens J, Bossuyt A, Verrey F. SPECT and PET amino acid tracer influx via system L (h4F2hc-hLAT1) and its trans-stimulation. J Nucl Med 2004;45:1591-1596.
  10. Kaim HA, Weber B, Kurrer MO, Westera G, Schweitzer A, Gottschalck J, Schulthess GK, Buck A. [18F]FDG and [18F]FET uptake in experimental soft tissue infection. Eur J Nucl Med 2002;29:648-654. https://doi.org/10.1007/s00259-002-0780-y
  11. Wang HE, Wu SY, Chang CW, Liu RS, Hwang LC, Lee TW, Chen JC, Hwang JJ. Evaluation of F-18-labeled amino acid derivatives and [18F]FDG as PET probes in a brain tumor-bearing animal model. Nucl Med Biol 2005;32:367-375. https://doi.org/10.1016/j.nucmedbio.2005.01.005
  12. Zuhayra M, Alfteimi A, Von Forstner C, Lutzen U, Meller B, Henze E. New approach for the synthesis of [18F]fluoroethyltyrosine for cancer imaging: simple, fast, and high yielding automated synthesis. Bioorg Med Chem 2009;17:7441-7448. https://doi.org/10.1016/j.bmc.2009.09.029
  13. Hamacher K, Coenen HH. Efficient routine production of the 18F-labelled amino acid O-(2-[18F]fluoroethyl)-L-tyrosine. Appl Radiat Isot 2002;57:853-856. https://doi.org/10.1016/S0969-8043(02)00225-7
  14. Kniess T, Laube M, Brust P, Steinbach J. 2-[18F]Fluoroethyl tosylate - a versatile tool for building 18F-based radiotracers for positron emission tomography. Med Chem Comm 2015;6:1714-1754. https://doi.org/10.1039/C5MD00303B