• Title/Summary/Keyword: Brain Korea 21

Search Result 912, Processing Time 0.031 seconds

Isolation of CONSTANS as a TGA4/OBF4 Interacting Protein

  • Song, Young Hun;Song, Na Young;Shin, Su Young;Kim, Hye Jin;Yun, Dae-Jin;Lim, Chae Oh;Lee, Sang Yeol;Kang, Kyu Young;Hong, Jong Chan
    • Molecules and Cells
    • /
    • v.25 no.4
    • /
    • pp.559-565
    • /
    • 2008
  • Members of the TGA family of basic domain/leucine zipper transcription factors regulate defense genes through physical interaction with NON-EXPRESSOR OF PR1 (NPR1). Of the seven TGA family members, TGA4/octopine synthase (ocs)-element-binding factor 4 (OBF4) is the least understood. Here we present evidence for a novel function of OBF4 as a regulator of flowering. We identified CONSTANS (CO), a positive regulator of floral induction, as an OBF4-interacting protein, in a yeast two-hybrid library screen. OBF4 interacts with the B-box region of CO. The abundance of OBF4 mRNA cycles with a 24 h rhythm under both long-day (LD) and short-day (SD) conditions, with significantly higher levels during the night than during the day. Electrophoretic mobility shift assays revealed that OBF4 binds to the promoter of the FLOWERING LOCUS T (FT) gene, a direct target of CO. We also found that, like CO and FT, an OBF4:GUS construct was prominently expressed in the vascular tissues of leaf, indicating that OBF4 can regulate FT expression through the formation of a protein complex with CO. Taken together, our results suggest that OBF4 may act as a link between defense responses and flowering.

Clinical effect of enamel matrix derivative(EMD) in the treatment of periodontal intrabony defects (골내 결손부에서 법랑기질 유도체의 임상적 효과)

  • Lee, Kyung-Jin;Kim, Min-Jung;Yun, Jeong-Ho;Jung, Ui-Won;Kim, Chang-Sung;Choi, Seong-Ho;Cho, Kyoo-Sung;Chai, Jung-Kiu;Kim, Chong-Kwan
    • Journal of Periodontal and Implant Science
    • /
    • v.34 no.3
    • /
    • pp.593-605
    • /
    • 2004
  • tachment level was changed from $8.67{\pm}1.72mm$ to $7.00{\pm}1.60mm$ (control); from $8.93{\pm}2.23mm$ to $6.00{\pm}1.92mm$ (test); and bone probing depth was decreased from $10.20{\pm}1.90mm$ to $9.07{\pm}1.95mm$ (control); from $10.14{\pm}2.14mm$ to $7.43{\pm}2.06mm$ (test). This study indicates that treatment of periodontal intrabony defects with EMD is clinically superior to treatment without EMD (OFD alone) in every parameter evaluated. Within the limits of this study, the application of EMD in intrabony defects resulted in clinically significant gain of clinical attachment level and decrease of bone probing depth. And further controlled clinical studies are required to confirm the effectiveness of the EMD in the treatment of various osseous defects.

The thickness of palatal masticatory mucosa (구개 저작 점막의 두께에 대한 연구)

  • Han, Kwang-Hee;Kim, Dong-Jin;Yun, Jeong-Ho;Jung, Ui-Won;Kim, Chang-Sung;Cho, Kyoo-Sung;Chai, Jung-Kiu;Kim, Chong-Kwan;Choi, Seong-Ho
    • Journal of Periodontal and Implant Science
    • /
    • v.34 no.3
    • /
    • pp.573-580
    • /
    • 2004
  • The Palatal masticatory mucosa was widely used as a donor site in periodontal and implant surgery. but there were relatively few studies investigating the thickness of the palatal mucosa in dentate subjects. The purpose of this study was to study the thickness of palatal masticatory mucosa in korean subjects by direct clinical technique. Forty systemically and periodontally healthy subjects(20 males:20 females) participated in this study. A bone sounding method using a periodontal probe with minimal anesthesia and a prepared clear acrylic stent was utilized to assess the thickness of palatal mucosa at 24 measurement points defined according to the gingival margin and mid palatal suture. The results are as follows; 1. Mean thickness of palatal masticatory mucosa was $3.5{\pm}0.4mm$. and no gender differences were identified in the thickness of palatal masticatory mucosa. 2. The thickness of palatal masticatory mucosa increased from canine to second molar area(with the exception of the first molar area). canine and first molar areas were significantly thinner than other areas(P<0.05). 3. The thickness of palatal masticatory mucosa significantly increased in the sites farther from the gingival margin towarding the mid-palate(P<0.05). The results suggest that within the limits of the present study, premolar area appears to be the most appropriate donor site for soft tissue grafting procedures.

Effects of mixture of fibrin-fibronectin sealant system and calcuim carbonate in periodontal intrabony defects (calcium carbonate와 fibrin-fibronectin sealant system 혼합이식이 치주골내낭 치유에 미치는 영향)

  • Chang, Soo-Jin;Han, Dong-Kwan;Yun, Jeong-Ho;Jung, Ui-Won;Kim, Chang-Sung;Choi, Seong-Ho;Cho, Kyoo-Sung;Kim, Chong-Kwan;Chai, Jung-Kiu
    • Journal of Periodontal and Implant Science
    • /
    • v.34 no.3
    • /
    • pp.581-591
    • /
    • 2004
  • Calcium carbonate(CC) is biocompatible and gradually absorb to be replaced by bone when implanted into bone tissue. Fibrin-fibronectin sealant system (FFSS) is a product of human-derived plasma. The effect is hemostasis, tissue fixation and adhesion, We expect synergic effects of this two materials in periodontal regeneration. When FFSS was grafted with bone graft in intrabony defects, could be eliminated exofolication of bone graft materials. This study evaluated above materials for periodontal regeneration of 6mm intrabony defects in 36 patients. lap surgery was carried in 14 defects of control group. experimental group 1 was 11 defects grafted with calcium carbonate, experimental group 2 was 11 defects which were grafted with calcium carbonate with FFSS. The clinical parameters evaluated included changes in attachment level, probing depth, gingival recession at 6 months. Postsurgery probing depth reduction was 3.1 ${\pm}$ 0.9mm in control, 3.8 ${\pm}$ 1.6mm in experimental group 1, 4.1 ${\pm}$ 1.1mm in experimental group 2. The result clinically and statistically improved compared to baseline(P<0.01), but the difference found among the groups were not statistically significant. Postsurgery clinical attachment level was 1.6 ${\pm}$ 1.2mm in control, 3.5 ${\pm}$ 2.0mm in experimental group 1, 3.3 ${\pm}$ 1.2mm in experimental group 2. All of the control and experimental groups resulted in a statistically significant reduction from baseline(P<0.01). The reduction of the experimental groups were statistically significant from control(P<0.05). But the change between experimental group 1 and experimental group 2 was not statistically significant. We conclude that mixture of CC and FFSS is effective to periodontal regeneration in intrabony defect.

Identification and Characterization of Alternative Promoters of the Rice MAP Kinase Gene OsBWMK1

  • Koo, Sung Cheol;Choi, Man Soo;Chun, Hyun Jin;Park, Hyeong Cheol;Kang, Chang Ho;Shim, Sang In;Chung, Jong Il;Cheong, Yong Hwa;Lee, Sang Yeol;Yun, Dae-Jin;Chung, Woo Sik;Cho, Moo Je;Kim, Min Chul
    • Molecules and Cells
    • /
    • v.27 no.4
    • /
    • pp.467-473
    • /
    • 2009
  • Our previous study suggested that OsBWMK1, a gene which encodes a member of the rice MAP kinase family, generates transcript variants which show distinct expression patterns in response to environmental stresses. The transcript variants are generated by alternative splicing and by use of alternative promoters. To test whether the two alternative promoters, pOsBWMK1L (promoter for the OsBWMK1L splice variant) and pOsBWMK1S (promoter for the OsBWMK1S splice variant), are biologically functional, we analyzed transgenic plants expressing GUS fusion constructs for each promoter. Both pOsBWMK1L and pOsBWMK1S are biologically active, although the activity of pOsBWMK1S is lower than that of pOsBWMK1L. Histochemical analysis revealed that pOsBWMK1L is constitutively active in most tissues at various developmental stages in rice and Arabidopsis, whereas pOsBWMK1S activity is spatially and temporally restricted. Furthermore, the expression of pOsBWMK1S::GUS was upregulated in response to hydrogen peroxide, a plant defense signaling molecule, in both plant species. These results suggest that the differential expression of OsBWMK1 splice variants is the result of alternative promoter usage and, moreover, that the mechanisms controlling OsBWMK1 gene expression are conserved in both monocot and dicot plants.

Development and Degeneration of Retinal Ganglion Cell Axons in Xenopus tropicalis

  • Choi, Boyoon;Kim, Hyeyoung;Jang, Jungim;Park, Sihyeon;Jung, Hosung
    • Molecules and Cells
    • /
    • v.45 no.11
    • /
    • pp.846-854
    • /
    • 2022
  • Neurons make long-distance connections via their axons, and the accuracy and stability of these connections are crucial for brain function. Research using various animal models showed that the molecular and cellular mechanisms underlying the assembly and maintenance of neuronal circuitry are highly conserved in vertebrates. Therefore, to gain a deeper understanding of brain development and maintenance, an efficient vertebrate model is required, where the axons of a defined neuronal cell type can be genetically manipulated and selectively visualized in vivo. Placental mammals pose an experimental challenge, as time-consuming breeding of genetically modified animals is required due to their in utero development. Xenopus laevis, the most commonly used amphibian model, offers comparative advantages, since their embryos ex utero during which embryological manipulations can be performed. However, the tetraploidy of the X. laevis genome makes them not ideal for genetic studies. Here, we use Xenopus tropicalis, a diploid amphibian species, to visualize axonal pathfinding and degeneration of a single central nervous system neuronal cell type, the retinal ganglion cell (RGC). First, we show that RGC axons follow the developmental trajectory previously described in X. laevis with a slightly different timeline. Second, we demonstrate that co-electroporation of DNA and/or oligonucleotides enables the visualization of gene function-altered RGC axons in an intact brain. Finally, using this method, we show that the axon-autonomous, Sarm1-dependent axon destruction program operates in X. tropicalis. Taken together, the present study demonstrates that the visual system of X. tropicalis is a highly efficient model to identify new molecular mechanisms underlying axon guidance and survival.

C. elegans Behavior of Preference Choice on Bacterial Food

  • Abada, Emad Abd-elmoniem;Sung, Hyun;Dwivedi, Meenakshi;Park, Byung-Jae;Lee, Sun-Kyung;Ahnn, Joohong
    • Molecules and Cells
    • /
    • v.28 no.3
    • /
    • pp.209-213
    • /
    • 2009
  • Caenorhabditis elegans is a free living soil nematode and thus in its natural habitat, C. elegans encounters many different species of soil bacteria. Although some soil bacteria may be excellent sources of nutrition for the worm, others may be pathogenic. Thus, we undertook a study to understand how C. elegans can identify their preferred food using a simple behavioral assay. We found that there are various species of soil bacteria that C. elegans prefers in comparison to the standard laboratory E. coli strain OP50. In particular, two bacterial strains, Bacillus mycoides and Bacillus soli, were preferred strains. Interestingly, the sole feeding of these bacteria to wild type animals results in extended lifespan through the activation of the autophagic process. Further studies will be required to understand the precise mechanism controlling the behavior of identification and selection of food in C. elegans.

Relationship between biofilm formation and the antimicrobial resistance in the Staphylococcus spp. isolated from animal and air

  • Seo, Yeon-Soo;Lee, Deog Young;Kang, Mi Lan;Lee, Won Jung;Yoo, Han Sang
    • Korean Journal of Veterinary Research
    • /
    • v.49 no.3
    • /
    • pp.231-236
    • /
    • 2009
  • Biofilm has been described as a barrier, which produced by microorganisms to survive and protect themselves against various environments, like antibiotic agents. Staphylococcus spp. is a common cause of nosocomial and environmental infection. Thirty-six and thirty-five Staphylococci were isolated from animals and air, respectively. Based on the biofilm forming ability of the bacterium reported in our previous report, relationship between biofilm formation and antibiotic-resistance was investigated in this study. Regarding antibiotics susceptibility, cefazolin was the most effective agent to the bacteria. Strong biofilm-forming Staphylococcus spp. isolates might have a higher antibiotic resistance than weak biofilm isolates regardless of the presence of antibiotic resistance genes (p < 0.05). This result suggested that the chemical complexity of the biofilm might increase the antibiotic resistance due to the decrease of antibiotic diffusion into cells through the extensive matrix.

Macromolecular and Elemental Composition Analyses of Leuconostoc mesenteroides ATCC 8293 Cultured in a Chemostat

  • Bang, Jeongsu;Li, Ling;Seong, Hyunbin;Kwon, Ye Won;Jeong, Eun Ji;Lee, Dong-Yup;Han, Nam Soo
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.5
    • /
    • pp.939-942
    • /
    • 2017
  • The cellular composition and metabolic compounds of Leuconostoc mesenteroides ATCC 8293 were analyzed after cultivation in an anaerobic chemostat. The macromolecular composition was 24.4% polysaccharide, 29.7% protein, 7.9% lipid, 2.9% DNA, and 7.4% RNA. Its amino acid composition included large amounts of lysine, glutamic acid, alanine, and leucine. Elements were in the order of C > O > N > H > S. The metabolites in chemostat culture were lactic acid (73.34 mM), acetic acid (7.69 mM), and mannitol (9.93 mM). These data provide a first view of the cellular composition of L. mesenteroides for use in metabolic flux analysis.