• Title/Summary/Keyword: Brain Korea 21

Search Result 924, Processing Time 0.028 seconds

Cell Death Mediated by Vibrio parahaemolyticus Type III Secretion System 1 Is Dependent on ERK1/2 MAPK, but Independent of Caspases

  • Yang, Yu-Jin;Lee, Na-Kyung;Lee, Na-Yeon;Lee, Jong-Woong;Park, Soon-Jung
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.9
    • /
    • pp.903-913
    • /
    • 2011
  • Vibrio parahaemolyticus, which causes gastroenteritis, wound infection, and septicemia, has two sets of type III secretion systems (TTSS), TTSS1 and TTSS2. A TTSS1-deficient vcrD1 mutant of V. parahaemolyticus showed an attenuated cytotoxicity against HEp-2 cells, and a significant reduction in mouse lethality, which were both restored by complementation with the intact vcrD1 gene. V. parahaemolyticus also triggered phosphorylation of mitogen-activated protein kinases (MAPKs) including p38 and ERK1/2 in HEp-2 cells. The ability to activate p38 and ERK1/2 was significantly affected in a TTSS1-deficient vcrD1 mutant. Experiments using MAPK inhibitors showed that p38 and ERK1/2 MAPKs are involved in V. parahaemolyticus-induced death of HEp-2 cells. In addition, caspase-3 and caspase-9 were processed into active forms in V. parahaemolyticus-exposed HEp-2 cells, but activation of caspases was not essential for V. parahaemolyticus-induced death of HEp-2 cells, as shown by both annexin V staining and lactate dehydrogenase release assays. We conclude that secreted protein(s) of TTSS1 play an important role in activation of p38 and ERK1/2 in HEp-2 cells that eventually leads to cell death via a caspase-independent mechanism.

A qPCR Method to Assay Endonuclease Activity of Cas9-sgRNA Ribonucleoprotein Complexes

  • Minh Tri Nguyen;Seul-Ah Kim;Ya-Yun Cheng;Sung Hoon Hong;Yong-Su Jin;Nam Soo Han
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.9
    • /
    • pp.1228-1237
    • /
    • 2023
  • The CRISPR-Cas system has emerged as the most efficient genome editing technique for a wide range of cells. Delivery of the Cas9-sgRNA ribonucleoprotein complex (Cas9 RNP) has gained popularity. The objective of this study was to develop a quantitative polymerase chain reaction (qPCR)-based assay to quantify the double-strand break reaction mediated by Cas9 RNP. To accomplish this, the dextransucrase gene (dsr) from Leuconostoc citreum was selected as the target DNA. The Cas9 protein was produced using recombinant Escherichia coli BL21, and two sgRNAs were synthesized through in vitro transcription to facilitate binding with the dsr gene. Under optimized in vitro conditions, the 2.6 kb dsr DNA was specifically cleaved into 1.1 and 1.5 kb fragments by both Cas9-sgRNA365 and Cas9-sgRNA433. By monitoring changes in dsr concentration using qPCR, the endonuclease activities of the two Cas9 RNPs were measured, and their efficiencies were compared. Specifically, the specific activities of dsr365RNP and dsr433RNP were 28.74 and 34.48 (unit/㎍ RNP), respectively. The versatility of this method was also verified using different target genes, uracil phosphoribosyl transferase (upp) gene, of Bifidobacterium bifidum and specific sgRNAs. The assay method was also utilized to determine the impact of high electrical field on Cas9 RNP activity during an efficient electroporation process. Overall, the results demonstrated that the qPCR-based method is an effective tool for measuring the endonuclease activity of Cas9 RNP.

Effects of Human Mesenchymal Stem Cell Transplantation Combined with Polymer on Functional Recovery Following Spinal Cord Hemisection in Rats

  • Choi, Ji Soo;Leem, Joong Woo;Lee, Kyung Hee;Kim, Sung-Soo;SuhKim, Haeyoung;Jung, Se Jung;Kim, Un Jeng;Lee, Bae Hwan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.16 no.6
    • /
    • pp.405-411
    • /
    • 2012
  • The spontaneous axon regeneration of damaged neurons is limited after spinal cord injury (SCI). Recently, mesenchymal stem cell (MSC) transplantation was proposed as a potential approach for enhancing nerve regeneration that avoids the ethical issues associated with embryonic stem cell transplantation. As SCI is a complex pathological entity, the treatment of SCI requires a multipronged approach. The purpose of the present study was to investigate the functional recovery and therapeutic potential of human MSCs (hMSCs) and polymer in a spinal cord hemisection injury model. Rats were subjected to hemisection injuries and then divided into three groups. Two groups of rats underwent partial thoracic hemisection injury followed by implantation of either polymer only or polymer with hMSCs. Another hemisection-only group was used as a control. Behavioral, electrophysiological and immunohistochemical studies were performed on all rats. The functional recovery was significantly improved in the polymer with hMSC-transplanted group as compared with control at five weeks after transplantation. The results of electrophysiologic study demonstrated that the latency of somatosensory-evoked potentials (SSEPs) in the polymer with hMSC-transplanted group was significantly shorter than in the hemisection-only control group. In the results of immunohistochemical study, ${\beta}$-gal-positive cells were observed in the injured and adjacent sites after hMSC transplantation. Surviving hMSCs differentiated into various cell types such as neurons, astrocytes and oligodendrocytes. These data suggest that hMSC transplantation with polymer may play an important role in functional recovery and axonal regeneration after SCI, and may be a potential therapeutic strategy for SCI.

A Model of University Reform in a Developing Country: The Brain Korea 21 Program

  • Seol, Sung-Soo
    • Asian Journal of Innovation and Policy
    • /
    • v.1 no.1
    • /
    • pp.31-49
    • /
    • 2012
  • This paper is a review of a 13-year-old policy for university reform in Korea, the Brain Korea 21 Program, based on current theoretical frameworks. Current theoretical frameworks are classified into three groups: micro and macro perspectives on universities and discussion on world-class universities. The overall purpose of BK21 is to bring up high-level scholarship through manpower and achieve several targets of university reform. The program can be evaluated as a success in terms of following a research university model but not the entrepreneurial university model. However, the fact that a 13-year old policy developed under a research university model had features of the entrepreneurial university shows the direction of change that the research university is currently undergoing.

Evaluation of ${\alpha}$-Tubulin as an Antigenic and Molecular Probe to Detect Giardia lamblia

  • Kim, Ju-Ri;Shin, Myeong-Heon;Song, Kyoung-Ju;Park, Soon-Jung
    • Parasites, Hosts and Diseases
    • /
    • v.47 no.3
    • /
    • pp.287-291
    • /
    • 2009
  • The ${\alpha}/{\beta}$-tubulin heterodimer is the basic subunit of microtubules in eukaryotes. Polyclonal antibodies specific to recombinant ${\alpha}$-tubulin of Giardia lamblia were made, and found effective as a probe to specifically detect G. lamblia by immunofluorescence assays. Nucleotide sequences of ${\alpha}$-tubulin genes were compared between G. lamblia WB and GS strains, prototypes of assemblage A and assemblage B, respectively. A set of primers was designed and used to amplify a portion of the ${\alpha}$-tubulin gene from G. lamblia. PCR-RFLP analysis of this ${\alpha}$-tubulin PCR product successfully differentiated G. lamblia into 2 distinct groups, assemblages A and B.Theresults indicate that ${\alpha}$-tubulin can be used as a molecular probe to detect G.lamblia.

Hydrogenosomal activity of Trichomonas varinalis cultivated under different iron conditions

  • Kim, Yong-Seok;Song, Hyun-Ouk;Choi, Ik-Hwa;Park, Soon-Jung;Ryu, Jae-Sook
    • Parasites, Hosts and Diseases
    • /
    • v.44 no.4 s.140
    • /
    • pp.373-378
    • /
    • 2006
  • To evaluate whether iron concentration in TYM medium influence on hydrogenosomal enzyme gene expression and hydrogenosomal membrane potential of Trichomonas vaginalis, trophozoites were cultivated in iron-depleted, normal and iron-supplemented TYM media. The mRNA of hydrogenosomal enzymes, such as pyruvate ferredoxin oxidoreductase (PFOR), hydrogenase, ferredoxin and malic enzyme, was increased with iron concentrations in T. vaginalis culture media, measured by RT-PCR. Hydrogenosomal membrane potentials measured with $DiOC_6$ also showed similar tendency, e.g. T. vaginalis cultivated in iron-depleted and iron-supplemented media for 3 days showed a significantly reduced and enhanced hydrogenosomal membrane potential compared with that of normal TYM media, respectively. Therefore, it is suggested that iron may regulate hydrogenosomal activity through hydrogenosomal enzyme expression and hydrogenosomal membrane potential.

Chlorophyll Fluorescence and Growth Response of Three South Korea Native Fern Species under In-door Light Intensity

  • Kyungtae Park;Bo Kook Jang;Cheol Hee Lee;Sang Yeob Lee;Ju Sung Cho
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2020.08a
    • /
    • pp.63-63
    • /
    • 2020
  • This study investigated the growth of native ferns under indoor light intensities to identify the introduction possibility as in-door ornamental plants. Three evergreen perennial fern species used in this experiment were Coniogramme japonica (Thunb.) Diels, Woodwardia japonica (L. f.) Sm., and Cyclosorus acuminatus (Houtt.) Nakai ex H. Itô. The light intensities were adjusted to 10, 50, 100 and 200 PPFD (µmol·m-2·s-1) based on the measurement of the various indoor light quantities. The experiment was conducted for a total of 8 weeks, and the light period (12/12h), temperature (25±1℃), and humidity (55±3%) were maintained during the experiment. The control plant group was grown in glass greenhouse for the same period. As the result of the study, in door C. japonica showed better growth under light intensities of 100, 200 PPFD. However, withering of the plants were observed under all light intensities except the control, which causes an ornamental value decrease. This seems to be related to the increase of DIo/RC value in chlorophyll fluorescence parameters. In the W. japonica growth data, the plant height was not significantly different from the control but, the leaf number decreased more than a two-fold. Also, the formed leaves turned brown and showed a poor growth and SPAD value at 200 PPFD had decreased significantly. Growth data of C. acuminatus was not significantly different with the control at all light intensities however, withering was observed at 100 and 200 PPFD. In chlorophyll fluorescence parameters, significant decrease in Pi_Abs and increase in DIo/RC value at 200 PPFD impose that stress caused by the intense light might be the reason of the withering of the plants.

  • PDF

The Calmodulin-Binding Transcription Factor OsCBT Suppresses Defense Responses to Pathogens in Rice

  • Koo, Sung Cheol;Choi, Man Soo;Chun, Hyun Jin;Shin, Dong Bum;Park, Bong Soo;Kim, Yul Ho;Park, Hyang-Mi;Seo, Hak Soo;Song, Jong Tae;Kang, Kyu Young;Yun, Dae-Jin;Chung, Woo Sik;Cho, Moo Je;Kim, Min Chul
    • Molecules and Cells
    • /
    • v.27 no.5
    • /
    • pp.563-570
    • /
    • 2009
  • We previously isolated the OsCBT gene, which encodes a calmodulin (CaM)-binding protein, from a rice expression library constructed from fungal elicitor-treated rice suspension cells. In order to understand the function of OsCBT in rice, we isolated and characterized a T-DNA insertion mutant allele named oscbt-1. The oscbt-1 mutant exhibits reduced levels of OsCBT transcripts and no significant morphological changes compared to wild-type plant although the growth of the mutant is stunted. However, oscbt-1 mutants showed significant resistance to two major rice pathogens. The growth of the rice blast fungus Magnaporthe grisea, as well as the bacterial pathogen Xanthomonas oryzae pv. oryzae was significantly suppressed in oscbt-1 plants. Histochemical analysis indicated that the hypersensitive-response was induced in the oscbt-1 mutant in response to compatible strains of fungal pathogens. OsCBT expression was induced upon challenge with fungal elicitor. We also observed significant increase in the level of pathogenesis-related genes in the oscbt-1 mutant even under pathogen-free condition. Taken together, the results support an idea that OsCBT might act as a negative regulator on plant defense.