DOI QR코드

DOI QR Code

The Calmodulin-Binding Transcription Factor OsCBT Suppresses Defense Responses to Pathogens in Rice

  • Koo, Sung Cheol (Division of Applied Life Science (Brain Korea 21 program), Plant Molecular Biology and Biotechnology Research Center and Environmental Biotechnology National Core Research Center, Gyeongsang National University) ;
  • Choi, Man Soo (National Institute of Crop Science, Rural Development Administration) ;
  • Chun, Hyun Jin (Division of Applied Life Science (Brain Korea 21 program), Plant Molecular Biology and Biotechnology Research Center and Environmental Biotechnology National Core Research Center, Gyeongsang National University) ;
  • Shin, Dong Bum (National Institute of Crop Science, Rural Development Administration) ;
  • Park, Bong Soo (Department of Plant Science, Seoul National University) ;
  • Kim, Yul Ho (National Institute of Crop Science, Rural Development Administration) ;
  • Park, Hyang-Mi (National Institute of Crop Science, Rural Development Administration) ;
  • Seo, Hak Soo (Department of Plant Science, Seoul National University) ;
  • Song, Jong Tae (School of Applied Biosciences, Kyungpook National University) ;
  • Kang, Kyu Young (Division of Applied Life Science (Brain Korea 21 program), Plant Molecular Biology and Biotechnology Research Center and Environmental Biotechnology National Core Research Center, Gyeongsang National University) ;
  • Yun, Dae-Jin (Division of Applied Life Science (Brain Korea 21 program), Plant Molecular Biology and Biotechnology Research Center and Environmental Biotechnology National Core Research Center, Gyeongsang National University) ;
  • Chung, Woo Sik (Division of Applied Life Science (Brain Korea 21 program), Plant Molecular Biology and Biotechnology Research Center and Environmental Biotechnology National Core Research Center, Gyeongsang National University) ;
  • Cho, Moo Je (Division of Applied Life Science (Brain Korea 21 program), Plant Molecular Biology and Biotechnology Research Center and Environmental Biotechnology National Core Research Center, Gyeongsang National University) ;
  • Kim, Min Chul (Division of Applied Life Science (Brain Korea 21 program), Plant Molecular Biology and Biotechnology Research Center and Environmental Biotechnology National Core Research Center, Gyeongsang National University)
  • Received : 2009.01.12
  • Accepted : 2009.04.07
  • Published : 2009.05.31

Abstract

We previously isolated the OsCBT gene, which encodes a calmodulin (CaM)-binding protein, from a rice expression library constructed from fungal elicitor-treated rice suspension cells. In order to understand the function of OsCBT in rice, we isolated and characterized a T-DNA insertion mutant allele named oscbt-1. The oscbt-1 mutant exhibits reduced levels of OsCBT transcripts and no significant morphological changes compared to wild-type plant although the growth of the mutant is stunted. However, oscbt-1 mutants showed significant resistance to two major rice pathogens. The growth of the rice blast fungus Magnaporthe grisea, as well as the bacterial pathogen Xanthomonas oryzae pv. oryzae was significantly suppressed in oscbt-1 plants. Histochemical analysis indicated that the hypersensitive-response was induced in the oscbt-1 mutant in response to compatible strains of fungal pathogens. OsCBT expression was induced upon challenge with fungal elicitor. We also observed significant increase in the level of pathogenesis-related genes in the oscbt-1 mutant even under pathogen-free condition. Taken together, the results support an idea that OsCBT might act as a negative regulator on plant defense.

Keywords

Acknowledgement

Supported by : Ministry of Education, Science and Technology of Korea, Korea Science and Engineering Foundation, Rural Development Administration

References

  1. Agrawal, G.K., Jwa, N.S., and Rakwal, R. (2000a). A novel rice (Oryza sativa L.) acidic PR1 gene highly responsive to cut, phytohormones, and protein phosphatase inhibitors. Biochem. Biophys. Res. Commun. 274, 157-165 https://doi.org/10.1006/bbrc.2000.3114
  2. Agrawal, G.K., Rakwal, R., and Jwa, N.S. (2000b). Rice (Oryza sativa L.) OsPR1b gene is phytohormonally regulated in close interaction with light signals. Biochem. Biophys. Res. Commun.278, 290-298 https://doi.org/10.1006/bbrc.2000.3781
  3. Ali, G.S., Reddy, V.S., Lindgren, P.B., Jakobek, J.L., and Reddy, A.S. (2003). Differential expression of genes encoding calmodulin-binding proteins in response to bacterial pathogens and inducers of defense responses. Plant Mol. Biol. 51, 803-815 https://doi.org/10.1023/A:1023001403794
  4. Belenghi, B., Acconcia, F., Trovato, M., Perazzolli, M., Bocedi, A., Polticelli, F., Ascenzi, P., and Delledonne, M. (2003). AtCYS1, a cystatin from Arabidopsis thaliana, suppresses hypersensitive cell death. Eur. J. Biochem. 270, 2593-2604 https://doi.org/10.1046/j.1432-1033.2003.03630.x
  5. Bouche, N., Scharlat, A., Snedden, W., Bouchez, D., and Fromm, H. (2002). A novel family of calmodulin-binding transcription activators in multicellular organisms. J. Biol. Chem. 277, 21851-21861 https://doi.org/10.1074/jbc.M200268200
  6. Bouche, N., Yellin, A., Snedden, W.A., and Fromm, H. (2005). Plant-specific calmodulin-binding proteins. Annu. Rev. Plant Biol. 56, 435-466 https://doi.org/10.1146/annurev.arplant.56.032604.144224
  7. Buschges, R., Hollricher, K., Panstruga, R., Simons, G., Wolter, M., Frijters, A., van Daelen, R., van der Lee, T., Diergaarde, P., Groenendijk, J., et al. (1997). The barley Mlo gene: a novel control element of plant pathogen resistance. Cell 88, 695-705 https://doi.org/10.1016/S0092-8674(00)81912-1
  8. Cheong, Y.H., Moon, B.C., Kim, J.K., Kim, C.Y., Kim, M.C., Kim, I.H., Park, C.Y., Kim, J.C., Park, B.O., Koo, S.C., et al. (2003). BWMK1, a rice mitogen-activated protein kinase, locates in the nucleus and mediates pathogenesis-related gene expression by activation of a transcription factor. Plant Physiol. 132, 1961-1972 https://doi.org/10.1104/pp.103.023176
  9. Chisholm, S.T., Coaker, G., Day, B., and Staskawicz, B.J. (2006). Host-microbe interactions: shaping the evolution of the plant immune response. Cell 124, 803-814 https://doi.org/10.1016/j.cell.2006.02.008
  10. Choi, M.S., Kim, M.C., Yoo, J.H., Moon, B.C., Koo, S.C., Park, B.O., Lee, J.H., Koo, Y.D., Han, H.J., Lee, S.Y., et al. (2005). Isolation of a calmodulin-binding transcription factor from rice (Oryza sativa L.). J. Biol. Chem. 280, 40820-40831 https://doi.org/10.1074/jbc.M504616200
  11. da Costa e Silva, O. (1994). CG-1, a parsley light-induced DNAbinding protein. Plant Mol. Biol. 25, 921-924 https://doi.org/10.1007/BF00028887
  12. Dangl, J.L., and Jones, J.D. (2001). Plant pathogens and integrated defence responses to infection. Nature 411, 826-833 https://doi.org/10.1038/35081161
  13. Dietrich, R.A., Richberg, M.H., Schmidt, R., Dean, C., and Dangl, J.L. (1997). A novel zinc finger protein is encoded by the Arabidopsis ipaN gene and functions as a negative regulator of plant cell death. Cell 88, 685-694 https://doi.org/10.1016/S0092-8674(00)81911-X
  14. Diez-Navajas, A.M., Greif, C., Poutaraud, A., and Merdinoglu, D. (2007). Two simplified fluorescent staining techniques to observe infection structures of the oomycete Plasmopara viticola in grapevine leaf tissues. Micron 38, 680-683 https://doi.org/10.1016/j.micron.2006.09.009
  15. Eulgem, T. (2005). Regulation of the Arabidopsis defense transcriptome. Trends Plant Sci. 10, 71-78 https://doi.org/10.1016/j.tplants.2004.12.006
  16. Finkler, A., Ashery-Padan, R., and Fromm, H. (2007). CAMTAs: calmodulin-binding transcription activators from plants to human. FEBS Lett. 581, 3893-3898 https://doi.org/10.1016/j.febslet.2007.07.051
  17. Galon, Y., Nave, R., Boyce, J.M., Nachmias, D., Knight, M.R., and Fromm, H. (2008). Calmodulin-binding transcription activator (CAMTA) 3 mediates biotic defense responses in Arabidopsis. FEBS Lett. 582, 943-948 https://doi.org/10.1016/j.febslet.2008.02.037
  18. Greenberg, J.T., and Yao, N. (2004). The role and regulation of programmed cell death in plant-pathogen interactions. Cell Microbiol. 6, 201-211 https://doi.org/10.1111/j.1462-5822.2004.00361.x
  19. Guimil, S., Chang, H.S., Zhu, T., Sesma, A., Osbourn, A., Roux, C., Ioannidis, V., Oakeley, E.J., Docquier, M., Descombes, P., et al. (2005). Comparative transcriptomics of rice reveals an ancient pattern of response to microbial colonization. Proc. Natl. Acad. Sci. USA 102, 8066-8070 https://doi.org/10.1073/pnas.0502999102
  20. Heil, M. (2002). Ecological costs of induced resistance. Curr. Opin. Plant Biol. 5, 345-350 https://doi.org/10.1016/S1369-5266(02)00267-4
  21. Heo, W.D., Lee, S.H., Kim, M.C., Kim, J.C., Chung, W.S., Chun, H.J., Lee, K.J., Park, C.Y., Park, H.C., Choi, J.Y., et al. (1999). Involvement of specific calmodulin isoforms in salicylic acidindependent activation of plant disease resistance responses. Proc. Natl. Acad. Sci. USA 96, 766-771 https://doi.org/10.1073/pnas.96.2.766
  22. Jeong, D.H., An, S., Kang, H.G., Moon, S., Han, J.J., Park, S., Lee, H.S., An, K., and An, G. (2002). T-DNA insertional mutagenesis for activation tagging in rice. Plant Physiol. 130, 1636-1644 https://doi.org/10.1104/pp.014357
  23. Jones, J.D., and Dangl, J.L. (2006). The plant immune system. Nature 444, 323-329 https://doi.org/10.1038/nature05286
  24. Jung, Y.H., Lee, J.H., Agrawal, G.K., Rakwal, R., Kim, J.A., Shim, J.K., Lee, S.K., Jeon, J.S., Koh, H.J., Lee, Y.H., et al. (2005). The rice (Oryza sativa) blast lesion mimic mutant, blm, may confer resistance to blast pathogens by triggering multiple defense-associated signaling pathways. Plant Physiol. Biochem. 43, 397-406 https://doi.org/10.1016/j.plaphy.2005.03.002
  25. Kim, M.C., Panstruga, R., Elliott, C., Muller, J., Devoto, A., Yoon, H.W., Park, H.C., Cho, M.J., and Schulze-Lefert, P. (2002a). Calmodulin interacts with MLO protein to regulate defence against mildew in barley. Nature 416, 447-451 https://doi.org/10.1038/416447a
  26. Kim, M.C., Lee, S.H., Kim, J.K., Chun, H.J., Choi, M.S., Chung, W.S., Moon, B.C., Kang, C.H., Park, C.Y., Yoo, J.H., et al. (2002b). Mlo, a modulator of plant defense and cell death, is a novel calmodulin-binding protein. Isolation and characterization of a rice Mlo homologue. J. Biol. Chem. 277, 19304-19314 https://doi.org/10.1074/jbc.M108478200
  27. Kim, C.Y., Koo, Y.D., Jin, J.B., Moon, B.C., Kang, C.H., Kim, S.T., Park, B.O., Lee, S.Y., Kim, M.L., Hwang, I., et al. (2003). Rice C2-domain proteins are induced and translocated to the plasma membrane in response to a fungal elicitor. Biochemistry 42, 11625-11633 https://doi.org/10.1021/bi034576n
  28. Kim, S.T., Kim, S.G., Hwang, D.H., Kang, S.Y., Kim, H.J., Lee, B.H., Lee, J.J., and Kang, K.Y. (2004). Proteomic analysis of pathogen-responsive proteins from rice leaves induced by rice blast fungus, Magnaporthe grisea. Proteomics 4, 3569-3578 https://doi.org/10.1002/pmic.200400999
  29. Kottapalli, K.R., Rakwal, R., Satoh, K., Shibato, J., Kottapalli, P., Iwahashi, H., and Kikuchi, S. (2007). Transcriptional profiling of indica rice cultivar IET8585 (Ajaya) infected with bacterial leaf blight pathogen Xanthomonas oryzae pv oryzae. Plant Physiol. Biochem. 45, 834-850 https://doi.org/10.1016/j.plaphy.2007.07.013
  30. Lee, S., Kim, J., Son, J.S., Nam, J., Jeong, D.H., Lee, K., Jang, S., Yoo, J., Lee, J., Lee, D.Y., et al. (2003). Systematic reverse genetic screening of T-DNA tagged genes in rice for functional genomic analyses: MADS-box genes as a test case. Plant Cell Physiol. 44, 1403-1411 https://doi.org/10.1093/pcp/pcg156
  31. Lorrain, S., Vailleau, F., Balague, C., and Roby, D. (2003). Lesion mimic mutants: keys for deciphering cell death and defense pathways in plants? Trends Plant Sci. 8, 263-271 https://doi.org/10.1016/S1360-1385(03)00108-0
  32. Ma, W., and Berkowitz, G.A. (2007). The grateful dead: calcium and cell death in plant innate immunity. Cell Microbiol. 9, 2571-2585 https://doi.org/10.1111/j.1462-5822.2007.01031.x
  33. Maleck, K., Levine, A., Eulgem, T., Morgan, A., Schmid, J., Lawton, K.A., Dangl, J.L., and Dietrich, R.A. (2000). The transcriptome of Arabidopsis thaliana during systemic acquired resistance. Nat. Genet. 26, 403-410 https://doi.org/10.1038/82521
  34. McGee, J.D., Hamer, J.E., and Hodges, T.K. (2001). Characterization of a PR-10 pathogenesis-related gene family induced in rice during infection with Magnaporthe grisea. Mol. Plant Microbe. Interact. 14, 877-886 https://doi.org/10.1094/MPMI.2001.14.7.877
  35. Park, C.Y., Lee, J.H., Yoo, J.H., Moon, B.C., Choi, M.S., Kang, Y.H., Lee, S.M., Kim, H.S., Kang, K.Y., Chung, W.S., et al. (2005). WRKY group IId transcription factors interact with calmodulin. FEBS Lett. 579, 1545-1550 https://doi.org/10.1016/j.febslet.2005.01.057
  36. Reddy, A.S., Reddy, V.S., and Golovkin, M. (2000). A calmodulin binding protein from Arabidopsis is induced by ethylene and contains a DNA-binding motif. Biochem. Biophys. Res. Commun. 279, 762-769 https://doi.org/10.1006/bbrc.2000.4032
  37. Snedden, W.A., and Fromm, H. (1998) Calmodulin, calmodulinrelated proteins and plant responses to the environment. Trends Plant Sci. 5, 154-159 https://doi.org/10.1016/S1360-1385(98)01284-9
  38. Szymanski, D.B., Liao, B., and Zielinski, R.E. (1996). Calmodulin isoforms differentially enhance the binding of cauliflower nuclear proteins and recombinant TGA3 to a region derived from the Arabidopsis Cam-3 promoter. Plant Cell 8, 1069-1077 https://doi.org/10.1105/tpc.8.6.1069
  39. Takabatake, R., Karita, E., Seo, S., Mitsuhara, I., Kuchitsu, K., and Ohashi, Y. (2007). Pathogen-induced calmodulin isoforms in basal resistance against bacterial and fungal pathogens in tobacco. Plant Cell Physiol. 48, 414-423 https://doi.org/10.1093/pcp/pcm011
  40. Tao, Y., Xie, Z., Chen, W., Glazebrook, J., Chang, H.S., Han, B., Zhu, T., Zou, G., and Katagiri, F. (2003). Quantitative nature of Arabidopsis responses during compatible and incompatible interactions with the bacterial pathogen Pseudomonas syringae. Plant Cell 15, 317-330 https://doi.org/10.1105/tpc.007591
  41. Veronese, P., Ruiz, M.T., Coca, M.A., Hernandez-Lopez, A., Lee, H., Ibeas, J.I., Damsz, B., Pardo, J.M., Hasegawa, P.M., Bressan, R.A., et al. (2003). In defense against pathogens. Both plant sentinels and foot soldiers need to know the enemy. Plant Physiol. 131, 1580-1590 https://doi.org/10.1104/pp.102.013417
  42. White, P.J., and Broadley, M.R. (2003). Calcium in plants. Ann. Bot. (Lond). 92, 487-511 https://doi.org/10.1093/aob/mcg164
  43. Yang, T., and Poovaiah, B.W. (2000). An early ethylene upregulated gene encoding a calmodulin-binding protein involved in plant senescence and death. J. Biol. Chem. 275, 38467-38473 https://doi.org/10.1074/jbc.M003566200
  44. Yang, T., and Poovaiah, B.W. (2002). A calmodulin-binding/CGCG box DNA-binding protein family involved in multiple signaling pathways in plants. J. Biol. Chem. 277, 45049-45058 https://doi.org/10.1074/jbc.M207941200
  45. Yang, T., and Poovaiah, B.W. (2003). Calcium/calmodulin-mediated signal network in plants. Trends Plant Sci. 8, 505-512 https://doi.org/10.1016/j.tplants.2003.09.004
  46. Yin, Z., Chen, J., Zeng, L., Goh, M., Leung, H., Khush, G.S., and Wang, G.L. (2000). Characterizing rice lesion mimic mutants and identifying a mutant with broad-spectrum resistance to rice blast and bacterial blight. Mol. Plant Microbe. Interact. 13, 869-876 https://doi.org/10.1094/MPMI.2000.13.8.869
  47. Yoo, J.H., Park, C.Y., Kim, J.C., Heo, W.D., Cheong, M.S., Park, H.C., Kim, M.C., Moon, B.C., Choi, M.S., Kang, Y.H., et al. (2005). Direct interaction of a divergent CaM isoform and the transcription factor, MYB2, enhances salt tolerance in Arabidopsis. J. Biol. Chem. 280, 3697-3706 https://doi.org/10.1074/jbc.M408237200
  48. Yu, I.C., Parker, J., and Bent, A.F. (1998). Gene-for-gene disease resistance without the hypersensitive response in Arabidopsis dnd1 mutant. Proc. Natl. Acad. Sci. USA 95, 7819-7824 https://doi.org/10.1073/pnas.95.13.7819
  49. Zegzouti, H., Jones, B., Frasse, P., Marty, C., Maitre, B., Latch, A., Pech, J.C., and Bouzayen, M. (1999). Ethylene-regulated gene expression in tomato fruit: characterization of novel ethyleneresponsive and ripening-related genes isolated by differential display. Plant J. 18, 589-600 https://doi.org/10.1046/j.1365-313x.1999.00483.x

Cited by

  1. Breaking the code: Ca2+ sensors in plant signalling vol.425, pp.1, 2009, https://doi.org/10.1042/bj20091147
  2. T-DNA 돌연변이를 이용한 벼 기능 유전체 연구 vol.37, pp.2, 2010, https://doi.org/10.5010/jpb.2010.37.2.133
  3. Characterization of novel calmodulin binding domains within IQ motifs of IQGAP1 vol.32, pp.6, 2009, https://doi.org/10.1007/s10059-011-0109-4
  4. Sequence analysis and expression of the calmodulin gene, MCaM-3, in mulberry (Morus L.) vol.33, pp.2, 2009, https://doi.org/10.1007/s13258-010-0124-4
  5. Suppression of DS1 Phosphatidic Acid Phosphatase Confirms Resistance to Ralstonia solanacearum in Nicotiana benthamiana vol.8, pp.9, 2009, https://doi.org/10.1371/journal.pone.0075124
  6. Structural Analysis of a Calmodulin Variant from Rice : THE C-TERMINAL EXTENSION OF OsCaM61 REGULATES ITS CALCIUM BINDING AND ENZYME ACTIVATION PROPERTIES vol.288, pp.44, 2009, https://doi.org/10.1074/jbc.m113.491076
  7. Tomato SR/CAMTA transcription factors SlSR1 and SlSR3L negatively regulate disease resistance response and SlSR1L positively modulates drought stress tolerance vol.14, pp.None, 2009, https://doi.org/10.1186/s12870-014-0286-3
  8. Regulatory interplay between soybean root and soybean cyst nematode during a resistant and susceptible reaction vol.14, pp.None, 2014, https://doi.org/10.1186/s12870-014-0300-9
  9. Calmodulin-binding transcription activators and perspectives for applications in biotechnology vol.99, pp.24, 2009, https://doi.org/10.1007/s00253-015-6966-6
  10. Genome-wide identification of CAMTA gene family members in Medicago truncatula and their expression during root nodule symbiosis and hormone treatments vol.6, pp.None, 2009, https://doi.org/10.3389/fpls.2015.00459
  11. Identification and expression profiling analysis of calmodulin-binding transcription activator genes in maize ( Zea mays L.) under abiotic and biotic stresses vol.6, pp.None, 2009, https://doi.org/10.3389/fpls.2015.00576
  12. Phylogeny of Plant CAMTAs and Role of AtCAMTAs in Nonhost Resistance to Xanthomonas oryzae pv. oryzae vol.7, pp.None, 2009, https://doi.org/10.3389/fpls.2016.00177
  13. Brassica napus Genome Possesses Extraordinary High Number of CAMTA Genes and CAMTA3 Contributes to PAMP Triggered Immunity and Resistance to Sclerotinia sclerotiorum vol.7, pp.None, 2009, https://doi.org/10.3389/fpls.2016.00581
  14. Genome-Wide Identification of Dicer-Like, Argonaute, and RNA-Dependent RNA Polymerase Gene Families in Brassica Species and Functional Analyses of Their Arabidopsis Homologs in Resistance to Sclero vol.7, pp.None, 2009, https://doi.org/10.3389/fpls.2016.01614
  15. Global gene expression analysis using RNA-seq uncovered a new role for SR1/CAMTA3 transcription factor in salt stress vol.6, pp.None, 2016, https://doi.org/10.1038/srep27021
  16. Cloning and Stress-Induced Expression Analysis of Calmodulin in the Antarctic Alga Chlamydomonas sp. ICE-L vol.74, pp.8, 2009, https://doi.org/10.1007/s00284-017-1263-5
  17. Positive interactions of major-effect QTLs with genetic background that enhances rice yield under drought vol.8, pp.None, 2009, https://doi.org/10.1038/s41598-018-20116-7
  18. Genetic Dissection of Grain Nutritional Traits and Leaf Blight Resistance in Rice vol.10, pp.1, 2019, https://doi.org/10.3390/genes10010030
  19. Phaseolus vulgaris genome possesses CAMTA genes, and phavuCAMTA1 contributes to the drought tolerance vol.98, pp.1, 2019, https://doi.org/10.1007/s12041-019-1069-2
  20. Ca 2+ /Calmodulin Complex Triggers CAMTA Transcriptional Machinery Under Stress in Plants: Signaling Cascade and Molecular Regulation vol.11, pp.None, 2009, https://doi.org/10.3389/fpls.2020.598327
  21. Rice CaM-binding transcription factor (OsCBT) mediates defense signaling via transcriptional reprogramming vol.14, pp.3, 2009, https://doi.org/10.1007/s11816-020-00603-y