• Title/Summary/Keyword: Box-Jenkin

Search Result 25, Processing Time 0.025 seconds

Design of fuzzy model using meiosis-genetic algorithm (감수분열 유전알고리즘을 이용한 퍼지 모델의 자동 설계)

  • Koh, Taek-Beom;Lee, Deog-Kyoo
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2696-2698
    • /
    • 2000
  • 본 연구에서는 실수형 염색체들로 구성된 개체에 대해 감수분열을 적용하여 개체를 만들고, 이 생식체들의 랜덤한 선택과 교배에 의해 세대가 진화함에 따라 탐색을 수행하는 감수분열 유전알고리즘을 이용하여 퍼지모델의 최적 구조와 파라미터를 탐색하고 Gradient Descent 알고리즘으로 파라미터를 정밀 조정하는 방안을 제안한다. 제안된 방안을 적용하여 Box-Jenkins의 가스로 데이터에 대한 퍼지모델을 구성하고 그 적용 가능성을 보인다.

  • PDF

Self-Organizing Fuzzy Model for Nonlinear Processes (비선형 공정에 대한 자기구성 퍼지 모델)

  • Koh, Taek-Beom
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1846-1847
    • /
    • 2007
  • 본 논문에서는 비선형 공정의 모델링 성능을 향상시키기 위하여 퍼지 엔트로피 분석을 통해 새로운 클러스터를 생성하고, 이 클러스터를 퍼지 모델의 새로운 규칙으로 추가하는 자기구성 퍼지 모델을 제안한다. 퍼지 엔트로피가 상대적으로 큰 데이터 집합으로 새로운 클러스터를 구성하면 퍼지 모델의 애매모호한 정도가 작아져서 모델링 오차가 줄어들 가능성이 크게 된다. 제안한 방법의 유용성을 입증하기 위해 이를 Box-Jenkins의 가스로 공정에 적용하여 퍼지 규칙수의 증가에 따른 모델링 성능의 변화를 보이고, 기존의 방법에 의한 모델링 결과와 비교한다.

  • PDF

Fuzzy Logic-based Modeling of a Score (퍼지 이론을 이용한 악보의 모델링)

  • 손세호;권순학
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.3
    • /
    • pp.264-269
    • /
    • 2001
  • In this paper, we interpret a score as a time series and deal with the fuzzy logic-based modeling of it. The musical notes in a score represent a lot of information about the length of a sound and pitches, etc. In this paper, using melodies, tones and pitches in a score, we transform data on a score into a time series. Once more, we foml the new Lime series by sliding a window through the time series. For analyzing the time series data, we make use of the Box-Jenkins s time series analysis. On the basis of the identified characteristics of time series, we construct the fuzzy model.

  • PDF

An Automatic Fuzzy Rule Extraction using Fuzzy Equalization and GA (퍼지 균등화와 유전알고리즘에 의한 자동적인 퍼지 규칙 생성)

  • 곽근창;김승석;유정웅;전명근
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2001.05a
    • /
    • pp.121-125
    • /
    • 2001
  • 본 논문에서는 자동적인 퍼지 규칙 생성을 위해 퍼지 균등화(Fuzzy Equalization)와 유전알고리즘(Genetic Algorithm)을 이용한 TSK 퍼지 시스템의 구축을 다룬다. Pedrycz에 의해 제안된 퍼지 균등화 방법은 수치적인 데이터로부터 확률분포함수를 구축한 후 전체공간상에서 이들을 적절히 표현할 수 있는 소속함수를 생성한다. 이렇게 구축된 각 입력에 대한 소속함수는 유전알고리즘에 의해 입력공간이 분할되며 결론부 파라미터는 최소자승법에 의해 추정되어 진다. 제안된 방법은 그리드 분할로 인해 규칙의 수가 증가하는 문제를 해결하고 학습데이터와 검증데이터에 의해 타당한 입력공간분할과 퍼지 규칙을 생성할 수 있다. 시뮬레이션의 예로서 Box-Jenkins의 가스로 데이터의 모델링에 적용하여 제안된 방법의 유용성을 알 수 있다.

  • PDF

A Study on the Estimation of Economic Population Statistical Model by Computer Simulation (컴퓨터 시뮬레이션에 의한 경제인구 예측 통계 모형에 관한 연구)

  • 정관희
    • Journal of the Korea Computer Industry Society
    • /
    • v.4 no.12
    • /
    • pp.1033-1042
    • /
    • 2003
  • In this study, the economic population prediction by computer simulation has been studied by using statistical model. The forecast of future population based on that of the past is a very difficult problem as uncertain conditions are modeled in it. Even if a thought forecast is possible, world-wide cultures and the local culture emotion the cultures of the world and out country can not be predicted due to rapid change and the estimation of population is ‘nowadays more and more’ difficult to be made good guess. In the estimation of economic population, by using the census population from 1960 to 1990, and using ARIMA model developed by Box and Jenkins, the estimation has been done on the economic population until 2021 according to age as appeared table and appendix. This kind of forecast would have both good point and weak point of ARIMA model theory saying that prediction can be done only by the economic population.

  • PDF

Nonlinear System Modeling using Independent Component Analysis and Neuro-Fuzzy Method (독립 성분 분석기법과 뉴로-퍼지를 이용한 비선형 시스템 모델링)

  • 김성수;곽근창;유정웅
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.10 no.5
    • /
    • pp.417-422
    • /
    • 2000
  • In this paper, an efficient fuzzy rule generation scheme for adaptive neuro-fuzzy system modeling using the Independent Component Analysis(ICA) as a preprocessing is proposed. Correlation between inputs was not considered in the conventional neuro- fuzzy modeling schemes, such that enormous number of rules and large amount of error were unavoidable. The correlation between inputs is weakened by employing ICA so that the number of rules and the amount of error are reduced. In simulation, the Box-Jenkins furnace data is used to verify the effectiveness of the proposed method.

  • PDF

An Automatic Fuzzy Rule Extraction using CFCM and Fuzzy Equalization Method (CFCM과 퍼지 균등화를 이용한 퍼지 규칙의 자동 생성)

  • 곽근창;이대종;유정웅;전명근
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.10 no.3
    • /
    • pp.194-202
    • /
    • 2000
  • In this paper, an efficient fuzzy rule generation scheme for Adaptive Network-based Fuzzy Inference System(ANFIS) using the conditional fuzzy-means(CFCM) and fuzzy equalization(FE) methods is proposed. Usually, the number of fuzzy rules exponentially increases by applying the gird partitioning of the input space, in conventional ANFIS approaches. Therefore, CFCM method is adopted to render the clusters which represent the given input and output fuzzy and FE method is used to automatically construct the fuzzy membership functions. From this, one can systematically obtain a small size of fuzzy rules which shows satisfying performance for the given problems. Finally, we applied the proposed method to the truck backer-upper control and Box-Jenkins modeling problems and obtained a better performance than previous works.

  • PDF

A Neuro-Fuzzy Modeling using the Hierarchical Clustering and Gaussian Mixture Model (계층적 클러스터링과 Gaussian Mixture Model을 이용한 뉴로-퍼지 모델링)

  • Kim, Sung-Suk;Kwak, Keun-Chang;Ryu, Jeong-Woong;Chun, Myung-Geun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.5
    • /
    • pp.512-519
    • /
    • 2003
  • In this paper, we propose a neuro-fuzzy modeling to improve the performance using the hierarchical clustering and Gaussian Mixture Model(GMM). The hierarchical clustering algorithm has a property of producing unique parameters for the given data because it does not use the object function to perform the clustering. After optimizing the obtained parameters using the GMM, we apply them as initial parameters for Adaptive Network-based Fuzzy Inference System. Here, the number of fuzzy rules becomes to the cluster numbers. From this, we can improve the performance index and reduce the number of rules simultaneously. The proposed method is verified by applying to a neuro-fuzzy modeling for Box-Jenkins s gas furnace data and Sugeno's nonlinear system, which yields better results than previous oiles.

Stochastic Modelling of Monthly flows for Somjin river (섬진강 월유출량의 추계학적 모형)

  • 이종남;이홍근
    • Water for future
    • /
    • v.17 no.4
    • /
    • pp.281-291
    • /
    • 1984
  • In our Koreans river basins there are many of monthly rainfall data, but unfortrnately streamflow data needed are rare. Analysing monthly rainfall data of Somjin river basin, the stochastic theory model for calculation of monthly streamflow series of that region is determined. The model is composed of Box & Jenkins stansfer function plus ARIMA residual models. This linear stochastic differenced time series equation models can adapt themselves to the structure and variety of rainfall, streamflow data on the assumption of the stationary covarience. The fiexibility of Box-Jenkins method consists mainly in the iterative technique of building an AIRMA model from observations and by the use of autocorrelation functions. The best models for Somjin river basin belong to the general calss: $Y_t=($\omega$o-$\omega$_1B) C_iX_t+$\varepsilon$t$ $Y_t$ monthly streamflow, $X_t$ : monthly rainfall, $C_i$ :monthly run-off, $$\omega$o-$\omega$_1$ : transfer parameter, $$\varepsilon$_t$ : residual The streamflow series resulted from the proposed model is satisfactory comparing with the exsting streamflow data of Somjin gauging station site.

  • PDF

Development of a Modified Real-valued Genetic Algorithm with an Improved Crossover (교배방법의 개선을 통한 변형 실수형 유전알고리즘 개발)

  • Lee, Deog-Kyoo;Lee, Sung-Hwan;Woo, Chun-Hee;Kim, Hag-Bae
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.49 no.12
    • /
    • pp.667-674
    • /
    • 2000
  • In this paper, a modified real-valued genetic algorithm is developed by using the meiosis for human's chromosome. Unlike common crossover methods adapted in the conventional genetic algorithms, our suggested modified real-valued genetic algorithm makes gametes by conducting the meiosis for individuals composed of chromosomes, and then generates a new individual through crossovers among those. Ultimately, when appling it for the gas data of Box-Jenkin, model and parameter identifications can be concurrently done to construct the optimal model of a neural network in terms of minimizing with the structure and the error.

  • PDF