An Automatic Fuzzy Rule Extraction using CFCM and Fuzzy Equalization Method

CFCM과 퍼지 균등화를 이용한 퍼지 규칙의 자동 생성

  • 곽근창 (충북대학교 전기전자공학부) ;
  • 이대종 (충북대학교 전기전자공학부) ;
  • 유정웅 (충북대학교 전기전자공학부) ;
  • 전명근 (충북대학교 전기전자공학부)
  • Published : 2000.06.01

Abstract

In this paper, an efficient fuzzy rule generation scheme for Adaptive Network-based Fuzzy Inference System(ANFIS) using the conditional fuzzy-means(CFCM) and fuzzy equalization(FE) methods is proposed. Usually, the number of fuzzy rules exponentially increases by applying the gird partitioning of the input space, in conventional ANFIS approaches. Therefore, CFCM method is adopted to render the clusters which represent the given input and output fuzzy and FE method is used to automatically construct the fuzzy membership functions. From this, one can systematically obtain a small size of fuzzy rules which shows satisfying performance for the given problems. Finally, we applied the proposed method to the truck backer-upper control and Box-Jenkins modeling problems and obtained a better performance than previous works.

본 논문에서는 여러 분야에서 널리 응용되고 있는 적응 뉴로-퍼지 시스템(ANFIS)에서의 효과적인 퍼지 규칙 생성 방법을 제안한다. 기존의 입력공간 그리드 분할을 이용한 ANFIS의 규칙 생성에 있어서는 얻어진 규칙의 수가 지수적으로 증가하는 단점이 있다. 이에, 본 연구에서는 조건부적인 FCM을 이용하여 입.출력 데이터이 특성을 잘 반영할 수 있는 클러스터를 구하고, 퍼지 균등화 방법을 적용하여 출력변수의 소속함수를 자동 생성하도록 하엿다. 이렇게 함으로서 적은 규칙 수를 갖으며서도 효율적인 퍼지 규칙을 얻을 수 있도록 하였다. 이들 방법의 유용함을 보이고자 트럭 후진제어와 Box-Jenkins의 가스로 데이터의 모델리에 적용하여 제안된 방법이 이전의 연구보다 좋은 결과를 보임을 알 수 있다.

Keywords

References

  1. IEEE Trans. on Fuzzy Systems v.3 no.1 A fuzzy-logic based approach to qualitative modeling M. Sugeno;T. Yasukawa
  2. Neuro-Fuzzy and Soft Computing : A Computational Approach to Learning and Machine Intelligence J.S.R. Jang;C.T. Sun;E. Mizutani
  3. Neural Fuzzy System : A Neuro-Fuzzy Synergism to Intelligent Systems C.T. Lin;C.S.G. Lee
  4. IEICE Trans. Inf. and Syst. v.E82-D no.6 A clustering-based method for fuzzy modeling C.C. Wang;C.C. Chen
  5. IEEE Trans. on System, Man and Cybern. v.23 no.3 ANFIS : Adaptive-Network-based Fuzzy Inference System J.S.R. Jang
  6. IEEE Trans. System v.2 no.1 Reinforcement structure parameter learning forneural network-based fuzzy logic control system C.T. Lin;C.S.G Lee
  7. Proc. of IEEE international conference on fuzzy system Structure determination in fuzzy modeling : A fuzzy CART approach J.S.R. Jang
  8. IEEE Trans. on Fuzzy System v.2 no.1 Rule-based structure identification in an adaptive-network-based fuzzy inference system C.T. Sun
  9. Pattern Recognition with Fuzzy Objective Function Algorithms J.C. Bezdek
  10. Journal of Intelligent Fuzzy System v.2 no.3 Fuzzy model identification based on cluster estimation S. Chiu
  11. IEEE Trans. on Neural Networks v.9 no.4 Conditional fuzzy clustering in the design of radial basis function neural networks W. Pedrycz
  12. 한국퍼지 및 지능 시스템학회 논문지 v.9 no.3 Data-based design on fuzzy sets W. Pedrycz;G. Vukovich
  13. in Proceeding IJCNN-89 v.2 An example of self-learning in neural networks D. Nguyen;B. Widrow
  14. EEE Trans. System, Man and Cybern. v.22 no.6 Generating fuzzy rules by learning from example L.X. Wang;J.M. Mendel
  15. Proceeding IJCNN-90 v.3 Comparison of fuzzy and neural truck backer upper control system S.G. Kang;B. Kosko
  16. Time Series Analysis, For ecasting and Control G.E.P. Box;G.M. Jenkins
  17. Fuzzy Sets and Systems v.4 The evaluation of fuzzy models derived from experimental data R.M. Tong
  18. Fuzzy Sets and Systems v.13 An identification algorithm in fuzzy relational systems W. Pedrycz
  19. IEEE Trans. on System, Man and Cybern. v.17 Fuzzy model identification and self-learning for dynamics systems C.W. Xu;Y.Z. Lu
  20. Fuzzy Sets and Systems v.86 Fuzzy system modeling by fuzzy partition and GA hybrid schemes Y.H. Joo;H.S. Hwang;K.B. Kim;K.B. Woo
  21. J. Math. Analysis and Application v.22 Probability measures of fuzzy events L.A. Zadeh
  22. 제어자동화 시스템공학회지 v.1 no.3 적응퍼지제어 공성곤;김민수
  23. 한국퍼지 및 지능 시스템학회 논문지 v.9 no.3 정수장 응집제 주입공정의 적응네트워크기반 퍼지 시스템 모델링 곽근창;한태환;유정웅;전명근
  24. Pattern Recognition Letter v.17 Conditional fuzzy c-means W. pedrycz