• Title/Summary/Keyword: Bowl Piston Type Combustion Chamber

Search Result 7, Processing Time 0.021 seconds

Calculation of the flow field in the cylinder of the diesel engine for different bowl shapes and swirl ratios (보올형상과 선회비에 따른 디젤기관 실린더내의 유동장 해석)

  • 최영진;양희천;유홍선;최영기
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.13 no.2
    • /
    • pp.50-66
    • /
    • 1991
  • There are many factors which influence on the performance of a diesel engine. The piston bowl shape and swirl ratio are important factors to enhance the fuel-air mixing and flame propagation. In this study, calculations of the flow field in the cylinder of the diesel engine were carried out using the CONCHAS-SPRAY code for different bowl shapes and swirl ratios. In the case of constant swirl ratio, vortices which affect fuel-air mixing, evaporation and flame propagation are generated more strongly and consistently in the bowl-piston type combustion chamber than in the flat piston type. With this strong squish effect, injected fuel droplets are widely diffused and rapidly evaporated in the bowl-piston type combustion chamber. Especially a strong squish is developed and large and strong vortices are generated in the edge cutted bowl piston chamber. As the swirl ratio increases, it is found that a large and strong squish and vortices are generated in the combustion chamber and also fuel droplets are diffused into the entire combustion chamber.

  • PDF

A Numerical Study of the Flow Field in the Combustion Chamber of the I.C Engine with Offset Valve (편심 밸브를 갖는 내연기관의 연소실 내부 유동장에 대한 수치적 연구)

  • 양희천;최영기;유홍선;고상근;허선무
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.8
    • /
    • pp.1552-1565
    • /
    • 1992
  • Three dimensional numerical calculations were carried out for two different combustion chambers with the offset valve in order to investigate the swirl and the squish effects on the flow fields. The modified K-.epsilon. turbulence model considering the change of the density under the condition of the rapid compression and expansion of the pistion was used. During the compression process, it was found that the squish flow which controls the subsequent combustion process was produced due to the piston bowl in the bowl piston type combustion chambers but not for the flat piston type. The swirl velocity close to the solid body rotation was maintained in the flat piston type combustion chambers, but for the bowl piston type a resulting from the change of the solid body rotation was generated in the radial-circumferential plane. For the swirl ratio effect, as the swirl ratio increases, it was found that a large and strong vortex was generated in the radial-circumferential plane of bowl piston type combustion chambers because of the strong inward flows from the combustion chamber wall. These computational results were compared with the results of LDA measurement.

An Optimization of the Combustion Parameters for Reducing Exhaust Emissions in a Direct Injection Diesel Engine (직접분사식 디젤기관 배기배출물 저감을 위한 연소인자의 최적화)

  • 주봉철;노병준;김규철;이삼구
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.5
    • /
    • pp.78-85
    • /
    • 2000
  • This study is to develop the diesel engine which has 6 cylinder natural aspiration direct injection type of 7.4$\ell$ with high performance, low emissions and low fuel consumption Finally the developed engine meets Korean `98 exhaust emission regulation for the city bus of heavy duty diesel engine by optimizing the various combustion parameters affecting performance and exhaust emissions. Combustion parameters are the swirl ratio of intake ports, the profile of injection pump`s cam affecting injection pressure, the design features of piston bowl of injection pump`s cam affecting injection pressure, the design features of piston bowl of combustion chamber and injector`s hole size. Through experimental analysis, various combustion parameters are optimized and the results are as follows; the swirl ratio is 2.20, the profile of injection pump`s cam is concave and re-entrant ratio, inner diameter of piston bowl and hole diameter of injector is 0.88,$\psi$64.0mm and $\psi$0.25mm respectively.

  • PDF

A Study on the Numerical Analysis of Behavior of Spray Droplets and Internal Flow Field of Cylinder in Diesel Engine (디젤기관의 실린더내 유동 및 분무액적 거동의 수치적 연구(I))

  • 장영준;박호준;전충환;김진원
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.16 no.1
    • /
    • pp.35-46
    • /
    • 1992
  • In this study, we calculated gas flow fields and distribution of fuel droplet and mass fraction using the CONCHAS-SPRAY code which modified to execute in IBM PC and changed three important factors, injection rate pattern (BASIC, I, II, III), different bowl shape and spray type. Especially vortices which be influenced by fuel-air mixing process, evaporation and flame propagation are generated more strongly in the bowl-piston type combustion chamber than in the flat-piston type. As the spray type changes, it is found that conical type produced large and strong vortices and fuel droplets are effictively diffused into the entire combustion chamber. As the injection rate pattern changes I, II, III based on BASIC type, we confirmed that End-of-Injection Effect strongly influence on droplets life time.

  • PDF

Influence of Piston Bowl Geometry on Combustion of a Diesel/CNG Reactivity Controlled Compression Ignition Engine (디젤/천연가스 반응성제어 압축착화 엔진에서 피스톤 형상에 따른 연소 특성)

  • Kim, Hyunsoo;Kim, Wooyeong;Bae, Choongsik
    • Journal of ILASS-Korea
    • /
    • v.26 no.2
    • /
    • pp.57-66
    • /
    • 2021
  • The reactivity controlled compression ignition (RCCI) is the technology that provides two different types of fuel to the combustion chamber with the advantage of significantly reducing particulate matter and nitrogen oxides emissions. However, due to the characteristics of lean combustion, combustion efficiency is worsened. The conventional type of pistons for conventional diesel combustion (CDC) has mostly been used in the researches on RCCI. Because the pistons for CDC are optimized to enhance flow and target spray, the pistons are unsuitable for RCCI. In this study, a piston that is suitable for RCCI is designed to improve combustion efficiency. The new piston was designed by considering the factors such as squish geometry, bowl depth, and surface area. The experiment was carried out by fixing the energy supply to 0.9kJ/cycle and 1.5kJ/cycle respectively. The two pistons were quantitatively compared in terms of thermal efficiency and combustion efficiency.

The behavior of swirl and tumble ratio in the combustion chamber of 4-valve engine with valve positions (밸브위치에 따른 4밸브 엔진 연소실 내부의 스월비와 텀블비의 거동)

  • Kim, Sung-Joon;Lee, Chon-Sik;Chun, Bong-Jun;Lee, Yong-Il
    • Journal of Industrial Technology
    • /
    • v.19
    • /
    • pp.51-57
    • /
    • 1999
  • This research has an object to find out how the position of inlet valve influence swirling and tumbling of turbulence inside the combustion chamber of 4 valve engine. The computational analysis of three dimensional complicated turbulence flow in the cylinder is done by the KIVA-3V program to carry out this object. One use 6 valve positions with the bowl type of piston cavity. The swirl ration and the tumbling ratio of flow filed are evaluated quantitatively to find out how each valve position influence flow phenomena in the combustion chamber during the intake and compression processes.

  • PDF

Experimental and Numerical Investigation on DME Spray Characteristics as a Function of Injection Timing in a High Pressure Diesel Injector (고압 분사 인젝터의 분사 시기에 따른 DME 분무특성에 관한 실험 및 해석적 연구)

  • Kim, Hyung-Jun;Park, Su-Han;Lee, Chang-Sik
    • Journal of ILASS-Korea
    • /
    • v.14 no.3
    • /
    • pp.109-116
    • /
    • 2009
  • The purpose of this study is the experimental and numerical investigation on the DME spray characteristics in the combustion chamber according to the injection timing in a common-rail injection system. The visualization system consisted of the high speed camera with metal halide lamp was used for analyzing the spray characteristics such as spray development processes and the spray tip penetration in the free and in-cylinder spray under various ambient pressure. In order to observe the spray characteristics as a function of injection timing, the piston head shape of re-entrant type was created and the fuel injected into the chamber according to various distance between nozzle tip and piston wall in consideration of injection timing. Also, the spray and evaporation characteristics in the cylinder was calculated by using KlVA-3V code for simulating spray development process and spray tip penetration under real engine conditions. It was revealed that the high ambient pressure of 3 MPa was led to delay the spray development and evaporation of DME spray. In addition, injected sprays after BTDC 20 degrees entered the bowl region and the spray at the BTDC 30 degrees was divided into two regions. In the calculated results, the liquefied spray tip penetration and fuel evaporation were shorter and more increased as the injection timing was retarded, respectively.

  • PDF