• Title/Summary/Keyword: Bovine dental pulp

Search Result 11, Processing Time 0.026 seconds

EFFECT OF EUGENOL ON REGULATION OF iCGRP RELEASE FROM THE BOVINE DENTAL PULP (치수에서 Eugenol이 iCGRP(immunoreactive calcitonin gene-related peptide)의 분비 조절에 미치는 영향)

  • Oh, Won-Mann;Choi, Nam-Ki;Kim, Sun-Hun
    • Restorative Dentistry and Endodontics
    • /
    • v.24 no.1
    • /
    • pp.180-186
    • /
    • 1999
  • Eugenol has been reported to reduce odontogenic pain and is known to have a structure similar to capsaicin, a potent stimulant of certain nociceptors. We have hypothesized that the analgesic effect of eugenol may be due, in part, to inhibition of capsaicin-sensitive nociceptors. To test this hypothesis, we evaluate whether eugenol inhibits capsaicin-sensitive release of immunoreactive calcitonin generated peptide(iCGRP) from bovine dental pulp. Freshly extracted bovine incisors were transported to the lab. on ice, Spilitted and pulp tissue was removed. The tissue was chopped into 200${\mu}m$ slices. Dental pulp was superfused(340 ${\mu}l/min$) in vitro with oxygenated Kreb's buffer. Eugenol and vehicle(0.02% 2-hydroxyl-${\beta}$-cyclodextrin) were administered prior to stimulation of pulp with capsaicin and iCGRP was measured by RIA. The results were as follows: 1. Administration of eugenol has no effect on basal release of iCGRP. 2. In the vehicle treated group, capsaicin evoked a 2.5-fold increase over basal iCGRP levels. 3. Administration of eugenol(600 ${\mu}M$) reduced capsaicin evoked release of iCGRP by more than 40%(153.4${\pm}$41.1% vs 258.9${\pm}$21.7%). 4. 2-hydroxylpropyl-${\beta}$-cyclodextrin of less than 0.02% is found to be an effective vehicle to dissolve eugenol without evoking iCGRP release from dental bovine pulp. These data indicate that eugenol inhibits pulpal capsaicin-sensitive fibers and suggest that intracanal medicament of eugenol may relieve pain, in part, by this mechanism.

  • PDF

A new phantom to evaluate the tissue dissolution ability of endodontic irrigants and activating devices

  • Kimia Khoshroo ;Brinda Shah;Alexander Johnson ;John Baeten ;Katherine Barry;Mohammadreza Tahriri ;Mohamed S. Ibrahim;Lobat Tayebi
    • Restorative Dentistry and Endodontics
    • /
    • v.45 no.4
    • /
    • pp.45.1-45.8
    • /
    • 2020
  • Objective: The aim of this study was to introduce a gelatin/bovine serum albumin (BSA) tissue standard, which provides dissolution properties identical to those of biological tissues. Further, the study evaluated whether the utilization of endodontic activating devices led to enhanced phantom dissolution rates. Materials and Methods: Bovine pulp tissue was obtained to determine a benchmark of tissue dissolution. The surface area and mass of samples were held constant while the ratio of gelatin and BSA were varied, ranging from 7.5% to 10% gelatin and 5% BSA. Each sample was placed in an individual test tube that was filled with an appropriate sodium hypochlorite solution for 1, 3, and 5 minutes, and then removed from the solution, blotted dry, and weighed again. The remaining tissue was calculated as the percent of initial tissue to determine the tissue dissolution rate. A radiopaque agent (sodium diatrizoate) and a fluorescent dye (methylene blue) were added to the phantom to allow easy quantification of phantom dissolution in a canal block model when activated using ultrasonic (EndoUltra) or sonic (EndoActivator) energy. Results: The 9% gelatin + 5% BSA phantom showed statistically equivalent dissolution to bovine pulp tissue at all time intervals. Furthermore, the EndoUltra yielded significantly more phantom dissolution in the canal block than the EndoActivator or syringe irrigation. Conclusions: Our phantom is comparable to biological tissue in terms of tissue dissolution and could be utilized for in vitro tests due to its injectability and detectability.

Comparison of Various Transfection Methods in Human and Bovine Cultured Cells

  • Jin, Longxun;Kim, Daehwan;Roh, Sangho
    • International Journal of Oral Biology
    • /
    • v.39 no.4
    • /
    • pp.177-185
    • /
    • 2014
  • Transfection is a gene delivery tool that is a popular means of manipulating cellular properties, such as induced pluripotent stem cell (iPSC) generation by reprogramming factors (Yamanaka factors). However, the efficiency of transfection needs to be improved. In the present study, three transfection protocols - non-liposomal transfection (NLT), magnetofection and electroporation - were compared by analysis of their transfection efficiencies and cell viabilities using human dental pulp cells (hDPC) and bovine fetal fibroblasts (bFF) as cell sources. Enhanced green fluorescent protein gene was used as the delivery indicator. For magnetofection, Polymag reagent was administrated. NLT, FuGENE-HD and X-treme GENE 9 DNA transfection reagents were used for NLT. For electroporation, the $Neon^{TM}$ and $NEPA21^{TM}$ electroporators were tested. $Neon^{TM}$ electroporation showed highest transfection efficiency when compared with NLT, magnetofection, and $NEPA21^{TM}$ electroporation, with transfection efficiency of about 33% in hDPC and 50% in bFF, based on viable cell population in each cell type. These results suggest that transfection by $Neon^{TM}$ electroporation can be used to deliver foreign genes efficiently in human and bovine somatic cells.

Comparison of the Microleakage and Shear Bond Strength to Dentine of Different Tricalcium Silicate-based Pulp Capping Materials (Tricalcum-silicate 기반 치수복조제의 미세누출 및 상아질 전단결합강도 비교)

  • Kim, Miri;Jo, Wansun;Jih, Myeongkwan;Lee, Sangho;Lee, Nanyoung
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.46 no.1
    • /
    • pp.76-84
    • /
    • 2019
  • This study evaluated the microleakage of three restorative materials and three tricalcium silicate-based pulp capping agents. The restorative materials were composite resin (CR), resin-reinforced glass ionomer cement (RMGI), and traditional glass ionomer cement (GIC) and the pulp capping agents were TheraCal $LC^{(R)}$ (TLC), $Biodentine^{(R)}$ (BD), and $ProRoot^{(R)}$ white MTA (WMTA). Additionally, shear bond strengths between the pulp-capping agents and dentine were compared. Class V cavities were made in bovine incisors and classified into nine groups according to the type of pulp-capping agent and final restoration. After immersion in 0.5% fuchsin solution, each specimen was observed with a stereoscopic microscope to score microleakage level. The crowns of the bovine incisors were implanted into acrylic resin, cut horizontally, and divided into three groups. TLC, BD and WMTA blocks were applied on dentine, and the shear bond strengths were measured using a universal testing machine. The microleakage was lowest in TLC + GIC, TLC + RMGI, TLC + CR, and BD + GIC groups and highest in WMTA + RMGI and WMTA + CR groups. The shear bond strength of BD group was the highest and that of WMTA group was significantly lower than the others.

Cytotoxicity of temporary cements on bovine dental pulp-derived cells (bDPCs) using real-time cell analysis

  • Malkoc, Meral Arslan;Demir, Necla;Sengun, Abdulkadir;Bozkurt, Serife Buket;Hakki, Sema Sezgin
    • The Journal of Advanced Prosthodontics
    • /
    • v.7 no.1
    • /
    • pp.21-26
    • /
    • 2015
  • PURPOSE. To evaluate the cytotoxicity of temporary luting cements on bovine dental pulp-derived cells (bDPCs). MATERIALS AND METHODS. Four different temporary cements were tested: Rely X Temp E (3M ESPE), Ultratemp (Ultradent), GC Fuji Temp (GC), and Rely X Temp NE (3M ESPE). The materials were prepared as discs and incubated in Dulbecco's modified eagle's culture medium (DMEM) for 72 hours according to ISO 10993-5. A real-time cell analyzer was used to determine cell vitality. After seeding $200{\mu}L$ of the cell suspensions into the wells of a 96-well plate, the bDPCs were cured with bioactive components released by the test materials and observed every 15 minutes for 98 hours. One-way ANOVA and Tukey-Kramer tests were used to analyze the results of the proliferation experiments. RESULTS. All tested temporary cements showed significant decreases in the bDPCs index. Rely X Temp E, GC Fuji Temp, and Rely X Temp NE were severely toxic at both time points (24 and 72 hours) (P<.001). When the cells were exposed to media by Ultratemp, the cell viability was similar to that of the control at 24 hours (P>.05); however, the cell viability was significantly reduced at 72 hours (P<.001). Light and scanning electron microscopy examination confirmed these results. CONCLUSION. The cytotoxic effects of temporary cements on pulpal tissue should be evaluated when choosing cement for luting provisional restorations.

Tooth bleaching effect by light activation on the tooth surface and intra-pulpal temperature: an in vitro study (광활성 유무가 치아미백과 치아표면 및 치수 내 온도에 미치는 영향)

  • Shim, Youn-Soo;Woo, Hee-Sun
    • Journal of Korean society of Dental Hygiene
    • /
    • v.14 no.4
    • /
    • pp.585-591
    • /
    • 2014
  • Objectives : The purpose of this study was to investigate of the color change, tooth surface and intra-pulpal temperature of tooth bleaching by light activation Methods : Forty-eight extracted bovine teeth were immersed into a tea solution for 24 hours. The specimens were randomly divided into four groups(n=15):(G1) 15% HP + without light activation, (G2) 15% HP + light activation, (G3) 25% HP + without light activation, (G4) 25% HP + light activation. All specimens were bleached for 15 minutes three times. The spectrophotometer (CM-2600d, Konica Minolta, Osaka, Japan) was used including before bleaching, immediately after bleaching, 1 week, 1 and 3 months after the end of bleaching. The temperature rise were measured in the pulpal chamber and tooth surface with a digital thermocouple thermometer(Termopar Digital Multimeter, Tektronix DMM916, USA). Between the tested time points, the specimens were stored in distilled water. The data were analyzed by ANOVA, t-test and Tukey's post hoc test set at 0.05. Results : There was no significant color change by the use of light after the bleaching treatment(p>0.05). The dental bleaching treatments of teeth with 15% HP and 25% HP did not seem to be more effective when light source was used. There was no difference in color stability between groups within three month(p>0.05). There was an increase in tooth surface and pulp temperature, but it was not sufficient to cause damage to the pulp. Conclusions :The use of light activation has no obvious effective impact on the tooth bleaching effect.

Coronal tooth discoloration induced by regenerative endodontic treatment using different scaffolds and intracanal coronal barriers: a 6-month ex vivo study

  • Shokouhinejad, Noushin;Razmi, Hassan;Farbod, Maryam;Alikhasi, Marzieh;Camilleri, Josette
    • Restorative Dentistry and Endodontics
    • /
    • v.44 no.3
    • /
    • pp.25.1-25.10
    • /
    • 2019
  • Objective: The aim of this study was to evaluate discoloration of teeth undergoing regenerative endodontic procedures (REPs) using blood clot or platelet-rich fibrin (PRF) as the scaffolds and different calcium silicate-based materials as the intracanal coronal barriers in an ex vivo model. Materials and Methods: Forty-eight bovine incisors were prepared and disinfected using 1 mg/mL double antibiotic paste (DAP). The specimens were then randomly divided into 2 groups (n = 24) according to the scaffolds (blood or PRF). After placement of scaffolds each group was divided into 2 subgroups (n = 12) according to the intracanal coronal barriers (ProRoot MTA or Biodentine). The pulp chamber walls were sealed with dentin bonding agent before placement of DAP and before placement of scaffolds. The color changes (${\Delta}E$) were measured at different steps. The data were analyzed using 2-way analysis of variance. Results: Coronal discoloration induced by DAP was not clinically perceptible (${\Delta}E{\leq}3.3$). Regarding the type of the scaffold, coronal discoloration was significantly higher in blood groups compared with PRF groups at the end of REP and after 1 month (p < 0.05). However, no significant difference was found between PRF and blood clot after 6 months (p > 0.05). Considering the type of intracanal coronal barrier, no significant difference existed between ProRoot MTA and Biodentine (p > 0.05). Conclusions: With sealing the dentinal tubules of pulp chamber with a dentin bonding agent and application of DAP as an intracanal medicament, coronal color change of the teeth following the use of PRF and blood sealed with either ProRoot MTA or Biodentine was not different at 6-month follow-up.

The effect of tumor necrosis factor (TNF)-α to induce matrix metalloproteinase (MMPs) from the human dental pulp, gingival, and periodontal ligament cells (사람의 치수, 치은, 치주인대 세포에 tumor necrosis factor (TNF)-α로 자극 시 matrix metalloproteinase (MMPs)의 분비에 관한 연구)

  • Rhim, Eun-Mi;Park, Sang-Hyuk;Kim, Duck-Su;Kim, Sun-Young;Choi, Kyoung-Kyu;Choi, Gi-Woon
    • Restorative Dentistry and Endodontics
    • /
    • v.36 no.1
    • /
    • pp.26-36
    • /
    • 2011
  • Objectives: In the present study, three kinds of tissues cells (pulp, gingiva, and periodontal ligament) were investigated if those cells express MMP and TIMP when they were stimulated with neuropeptides (substance P, CGRP) or proinflammatory cytokine, TNF-$\alpha$. Materials and Methods: The cells cultured from human dental pulp (PF), gingiva (GF) and periodontal ligament were (PDLF) stimulated with Mock, SP, TNF-$\alpha$, and CGRP for 24 hrs and 48 hrs. for an RNase protection assay and Enzyme Linked Immunosorbent Assay. Cells (PF, GF and PDLF) seeded in 100 mm culture dish were stimulated with SP ($10^{-5}$, $10^{-8}\;M$) or only with medium (Mock stimulation) for 4hrs and for 24 hrs for RNase Protection Assay, and they were stimulated with CGRP ($10^{-5}\;M$) and TNF-$\alpha$(2 ng/mL) for 24 hrs and with various concentraion of TNF-$\alpha$(2, 10, and 100 ng/mL) for Rnase Protection Assay with a human MMP-1 probe set including MMP 1, 2, 8, 7, 8, 9, 12, and TIMP 2, 3. In addition, cells (PF, GF and PDLF) were stimulated with Mock and various concentraion of TNF-$\alpha$(2, 10, and 100 ng/mL) for 24 hrs and with TNF-$\alpha$(10 ng/mL) for 48 hrs, and the supernatents from the cells were collected for Enzyme Linked Immunosorbent Assay (ELISA) for MMP-1 and MMP-13. Results: The expression of MMPs in PF, GF, PDLF after stimulation with SP and CGRP were not changed compared with Mock stimulation for 4 hrs and 24 hrs. The expression of MMP-1, -12, -13 24 hrs after stimulation with TNF-$\alpha$ were upregulated, however the expression of TIMP-3 in PF, GF, PDLF after stimulation with TNF-$\alpha$ were downregulated. TNF-$\alpha$(2 ng/mL, 10 ng/mL, 100 ng/mL) increased MMP-1 and MMP-12 expression in PF dose dependently for 24 hrs. Conclusions: TNF-$\alpha$ in the area of inflammation may play an important role in regulating the remodeling of dentin, cementum, and alveolar bone.

EVALUATION OF OSTEOGENIC ACTIVITY AND MINERALIZATION OF CULTURED HUMAN DENTAL PAPILLA-DERIVED CELLS (배양된 치유두 유래세포의 조골활성 및 골기질 형성의 평가)

  • Park, Bong-Wook;Byun, June-Ho;Choi, Mun-Jeoung;Hah, Young-Sool;Kim, Deok-Ryong;Cho, Yeong-Cheol;Sung, Iel-Yong;Kim, Jong-Ryoul
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.29 no.4
    • /
    • pp.279-288
    • /
    • 2007
  • In the present study, we focused on stem cells in the dental papilla of the tooth germ. The tooth germ, sometimes called the tooth bud, is the primordial structure from which a tooth is formed. The tooth germ consists of the enamel organ, the dental papilla, and the dental follicle. The dental papilla lies below a cellular aggregation of the enamel organ. Mesenchymal cells within the dental papilla are responsible for formation of dentin and pulp of a tooth. Tooth germ disappears as a tooth is formed, but that of a third molar stays in the jawbone of a human until the age of 10 to 16, because third molars grow slowly. Impacted third molar tooth germs from young adults are sometimes extracted for orthodontic treatment. In the present study, we evaluated the osteogenic activity and mineralization of cultured human dental papilla-derived cells. Dental papillas were harvested from mandible during surgical extraction of lower impacted third molar from 3 patients aged 13-15 years. After passage 3, the dental papilla-derived cells were trypsinized and subsequently suspended in the osteogenic induction DMEM medium supplemented with 10% fetal bovine serum, 50 g/ml L-ascorbic acid 2-phosphate, 10 nM dexamethasone and 10 mM -glycerophosphate at a density of $1\;{\times}10^6\;cells/dish$ in a 100-mm culture dish. The dental papilla-derived cells were then cultured for 6 weeks and the medium was changes every 3 days during the incubation period. Dental papilla-derived cells showed positive alkaline phosphatase (ALP) staining during 42 days of culture period. The formation of ALP stain showed its maximal manifestation at day 7 of culture period, then decreased in intensity during the culture period. ALP mRNA level was largely elevated at 1 weeks and gradually decreased with culture time. Osteocalcin mRNA expression appeared at day 14 in culture, after that its expression continuously increased in a time-dependent manner up to day 28. The expression remained constant thereafter. Runx2 expression appeared at day 7 with no detection thereafter. Von Kossa-positive mineralization nodules were first present at day 14 in culture followed by an increased number of positive nodules during the entire duration of the culture period. Osteocalcin secretion was detectable in the culture medium from 1 week. The secretion of osteocalcin from dental papilla-derived cells into the medium greatly increased after 3 weeks although it showed a shallow increase by then. In conclusion, our study showed that cultured human dental papilla-derived cells differentiated into active osteoblastic cells that were involved in synthesis of bone matrix and the subsequent mineralization of the matrix.

Osteocalcin Expression and Mineralization in Developing Tooth of Xenopus laevis

  • Park, Jung Hoe;Kwon, Ki-Tak;Park, Byung Keon;Lee, Young-Hoon
    • International Journal of Oral Biology
    • /
    • v.40 no.1
    • /
    • pp.1-9
    • /
    • 2015
  • Osteocalcin (OC) is the most abundant noncollagenous protein of extracellular matrix in the bone. In an OC deficient mouse, bone formation rates are increased in cancellous and cortical bones. OC is known as a negative regulator of mineral apposition. OC is also expressed in the tooth of the rat, bovine, and human. However, little is known about OC during tooth development in Xenopus. The purpose of this study is to compare the expression of OC with mineralization in the developing tooth of Xenopus, by using von Kossa staining and in situ hybridization. At stage 56, the developmental stage of tooth germ corresponds to the cap stage, and an acellular zone was apparent between the dental papilla and the enamel organ. From stage 57, calcium deposition was revealed by von Kossa staining prior to OC expression, and the differentiated odontoblasts forming predentin were located at adjoining predentin. At stage 58, OC transcripts were detected in the differentiated odontoblasts. At stage 66, OC mRNA was expressed in the odontoblasts, which was aligned in a single layer at the periphery of the pulp. These findings suggest that OC may play a role in mineralization and odontogenesis of tooth development in Xenopus.