• 제목/요약/키워드: Boundary Method

Search Result 7,422, Processing Time 0.036 seconds

Elastic Analysis of a Half-Plane Containing an Inclusion and a Void Using Mixed Volume and Boundary Integral Equation Method (혼합 체적-경계 적분방정식법을 이용한, 함유체와 공동을 포함한 반무한 고체에서의 탄성해석)

  • Lee, Jung-Ki;Yoon, Koo-Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.12
    • /
    • pp.1072-1087
    • /
    • 2008
  • A mixed volume and boundary integral equation method (Mixed VIEM-BIEM) is used to calculate the plane elastostatic field in an isotropic elastic half-plane containing an isotropic or anisotropic inclusion and a void subject to remote loading parallel to the traction-free boundary. A detailed analysis of stress field at the interface between the isotropic matrix and the isotropic or orthotropic inclusion is carried out for different values of the distance between the center of the inclusion and the traction-free surface boundary in an isotropic elastic half-plane containing three different geometries of an isotropic or orthotropic inclusion and a void. The method is shown to be very accurate and effective for investigating the local stresses in an isotropic elastic half-plane containing multiple isotropic or anisotropic inclusions and multiple voids.

Knowledge Based Automated Boundary Detection for Quantifying of Left Ventricular Function in Low Contrast Angiographic Images (저대조 혈관 조영상에서 좌심실 기능의 정량화를 위한 지식 기반의 경계선 자동검출)

  • 전춘기;권용무
    • Journal of Biomedical Engineering Research
    • /
    • v.17 no.1
    • /
    • pp.109-120
    • /
    • 1996
  • Cardiac function is evaluated quantitatively using angiographic images via the analysis of the shape change or the heart wall boundaries. To kin with, boundary defection or ESLV(End Systolic Lert Ventricular) and EDLV(End Diastolic Left Ventricular) is essential for the quantitative analysis of cardiac function. The boundary detection methods proposed in the past were almost semi-automatic. Intervention by a knowledgeable human operator was still required Of con, manual tracing of the boundaries is currently used for subsequent analysis and diagnosis. This method would not cut excessive time, labor, and subjectivity associated with manual intervention by a human operator. EDLV images have noncontiguous and ambiguous edge signal on some boundary regions. In this paper, we propose a new method for automated detection of boundaries in noncontiguous and ambiguous EDLV images. The boundary detection scheme which based on a priori knowledge information is divided into two steps. The first step is to detect the candidate edge points of EDLV using ESLV boundaries. The second step is to correct detected boundaries of EDLV using the LV shape. We developed the algorithm of modifying EDLV boundaries defined adaptive modifier. We experimented the method proposed in this paper and compared our proposed method with the manual method in detecting boundaries of EDLV. In the areas within estimated boundaries of EDLV, the percentage of error was about 1.4%. We verified the useflilness and obtained the satisfying results througll the experiments of the proposed method.

  • PDF

New measurement method for the boundary image sticking and improvement method. (AC PDP 경계잔상의 새로운 측정 방법자 개선 방안)

  • Choi, Woo-Sung;Jang, Yong-Min;Choi, Won-Young;Lee, Ji-Hoon;Shin, Jung-Hong;Park, Cha-Soo;Lee, Ho-Jun;Park, Chung-Hoo
    • Proceedings of the KIEE Conference
    • /
    • 2005.07c
    • /
    • pp.2241-2243
    • /
    • 2005
  • Although the boundary image sticking is one of major factors to determine display quality in AC PDP, a reliable measurement method has not reported so far. The boundary image sticking is recognized clearly by our eyes, but it is difficult to compare with adjacent cells by using a measurement method. However, the boundary image sticking can be analyzed by CCD DSLR camera method because this method can distinguish between the boundary cell and the adjacent cells. Moreover, we suggested new driving waveform for the reduction of the boundary image sticking.

  • PDF

Force Analysis on the Nano/Micro Particle in a Flow using Immersed Boundary-Lattice Boltzmann Method (가상경계-격자 볼츠만 방법을 이용한 유동장내 나노/마이크로 입자에 작용하는 힘의 해석)

  • Jo, Hong Ju;Lee, Sei Young
    • Journal of Biomedical Engineering Research
    • /
    • v.43 no.1
    • /
    • pp.35-44
    • /
    • 2022
  • Immersed boundary-Lattice Boltzmann Method (IB-LBM) is used for the analysis of flow over the circular cylinder in the concept of fluid-structure interaction analysis (FSI). Recently, IB-LBM has shown the enormous possibility for the application of various biomedical engineering fields, such as the movement of a human body or the behavior of the blood cells and/or particle-based drug delivery system in blood vessels. In order for the numerical analysis of the interaction between fluid and solid object, immersed boundary method and lattice Boltzmann method are coupled to analyze the flow over a cylinder for low Reynolds laminar flow (Re=10, 20, 40 and 100) with Zhu-He boundary condition at the boundary. With the developed IB-LBM, the flow around the cylinder in the uniform flow is analyzed for the laminar flow and the drag and lift coefficients and recirculation length are compared to the previous results.

Nonlinear boundary parameter identification of bridges based on temperature-induced strains

  • Wang, Zuo-Cai;Zha, Guo-Peng;Ren, Wei-Xin;Hu, Ke;Yang, Hao
    • Structural Engineering and Mechanics
    • /
    • v.68 no.5
    • /
    • pp.563-573
    • /
    • 2018
  • Temperature-induced responses, such as strains and displacements, are related to the boundary conditions. Therefore, it is required to determine the boundary conditions to establish a reliable bridge model for temperature-induced responses analysis. Particularly, bridge bearings usually present nonlinear behavior with an increase in load, and the nonlinear boundary conditions cause significant effect on temperature-induced responses. In this paper, the bridge nonlinear boundary conditions were simulated as bilinear translational or rotational springs, and the boundary parameters of the bilinear springs were identified based on the measured temperature-induced responses. First of all, the temperature-induced responses of a simply support beam with nonlinear translational and rotational springs subjected to various temperature loads were analyzed. The simulated temperature-induced strains and displacements were assumed as measured data. To identify the nonlinear translational and rotational boundary parameters of the bridge, the objective function based on the temperature-induced responses is then created, and the nonlinear boundary parameters were further identified by using the nonlinear least squares optimization algorithm. Then, a beam structure with nonlinear translational and rotational springs was simulated as a numerical example, and the nonlinear boundary parameters were identified based on the proposed method. The numerical results show that the proposed method can effectively identify the parameters of the nonlinear boundary conditions. Finally, the boundary parameters of a real arch bridge were identified based on the measured strain data and the proposed method. Since the bearings of the real bridge do not perform nonlinear behavior, only the linear boundary parameters of the bridge model were identified. Based on the bridge model and the identified boundary conditions, the temperature-induced strains were recalculated to compare with the measured strain data. The recalculated temperature-induced strains are in a good agreement with the real measured data.

COMPARISON OF NUMERICAL METHODS FOR TERNARY FLUID FLOWS: IMMERSED BOUNDARY, LEVEL-SET, AND PHASE-FIELD METHODS

  • LEE, SEUNGGYU;JEONG, DARAE;CHOI, YONGHO;KIM, JUNSEOK
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.20 no.1
    • /
    • pp.83-106
    • /
    • 2016
  • This paper reviews and compares three different methods for modeling incompressible and immiscible ternary fluid flows: the immersed boundary, level set, and phase-field methods. The immersed boundary method represents the moving interface by tracking the Lagrangian particles. In the level set method, an interface is defined implicitly by using the signed distance function, and its evolution is governed by a transport equation. In the phase-field method, the advective Cahn-Hilliard equation is used as the evolution equation, and its order parameter also implicitly defines an interface. Each method has its merits and demerits. We perform the several simulations under different conditions to examine the merits and demerits of each method. Based on the results, we determine the most suitable method depending on the specific modeling needs of different situations.

FUNCTIONAL ITERATIVE METHODS FOR SOLVING TWO-POINT BOUNDARY VALUE PROBLEMS

  • Lim, Hyo Jin;Kim, Kyoum Sun;Yun, Jae Heon
    • Journal of applied mathematics & informatics
    • /
    • v.31 no.5_6
    • /
    • pp.733-745
    • /
    • 2013
  • In this paper, we first propose a new technique of the functional iterative methods VIM (Variational iteration method) and NHPM (New homotopy perturbation method) for solving two-point boundary value problems, and then we compare their numerical results with those of the finite difference method (FDM).

Analysis of Three Dimensional Crack Growth by Using the Symmetric Galerkin Boundary Element Method

  • Kim, Tae-Soon;Park, Jai-Hak
    • International Journal of Safety
    • /
    • v.2 no.1
    • /
    • pp.17-22
    • /
    • 2003
  • In order to analyze general three dimensional cracks in an infinite body, the symmetric Galerkin boundary element method formulated by Li and Mear is used. A crack is modelled as distribution of displacement discontinuities, and the governing equation is formulated as singularity-reduced integral equations. With the proposed method several example problems for three dimensional cracks in an infinite solid, as well as their growth under fatigue, are solved and the accuracy and efficiency of the method are demonstrated.

Boundary Layer Flow Under a Sluice Gate (수직수문하의 경계층흐름)

  • 이정열
    • Water for future
    • /
    • v.27 no.3
    • /
    • pp.95-105
    • /
    • 1994
  • The boundary layer flow under a sluice gate is numerically solved by the random vortex sheet method combined with the vortex-in-cell method in a boundary-fitted coordinate system. The numerical solution shows that the boundary layer developed along the vertical sluice gate wall is the primary cause for the discrepancy in the contraction ratio between the laboratory experiments and inviscid theory; the bottom boundary layer plays much a smaller role in the discrepancy. By dimensional analysis it is concluded that the discrepancy is inversely proportional to the 3/4th power of the gate opening, as analyzed by Benjamin(1956). The results of the numerical simulation and dimensional analysis show a good agreement with experimental results obtained by Benjamin(1956).

  • PDF

A FIFTH ORDER NUMERICAL METHOD FOR SINGULARLY PERTURBED DIFFERENTIAL-DIFFERENCE EQUATIONS WITH NEGATIVE SHIFT

  • Chakravarthy, P. Pramod;Phaneendra, K.;Reddy, Y.N.
    • Journal of applied mathematics & informatics
    • /
    • v.27 no.1_2
    • /
    • pp.441-452
    • /
    • 2009
  • In this paper, a fifth order numerical method is presented for solving singularly perturbed differential-difference equations with negative shift. In recent papers the term negative shift has been using for delay. Similar boundary value problems are associated with expected first exit time problem of the membrane, potential in models for neuron and in variational problems in control theory. In the numerical treatment for such type of boundary value problems, first we use Taylor approximation to tackle terms containing small shifts which converts it to a boundary value problem for singularly perturbed differential equation. The two point boundary value problem is transformed into general first order ordinary differential equation system. A discrete approximation of a fifth order compact difference scheme is presented for the first order system and is solved using the boundary conditions. Several numerical examples are solved and compared with exact solution. It is observed that present method approximates the exact solution very well.

  • PDF