• 제목/요약/키워드: Bottom structures

검색결과 769건 처리시간 0.032초

가스 하이드레이트 자료에 대한 중합전 키르히호프 심도 구조보정 (Kirchhoff prestack depth migration for gas hydrate seismic data set)

  • 도안 후이 히엔;장성형;김영완;서상용
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 춘계학술대회
    • /
    • pp.493-496
    • /
    • 2007
  • Korean Institute of Geosciences and Mineral Resources (KIGAM) has studied on gas hydrate in the Ulleung Basin, East sea of Korea since 1997. Most of all, a evidence for existence of gas hydrate, possible new energy resources, in seismic reflection data is bottom simulating reflection (BSR) which parallel to the sea bottom. Here we conducted the conventional data processing for gas hydrate data and Kirchhoff prestack depth migration. Kirchhoff migration is widely used for pre- and post-stack migration might be helpful to better image as well as to get the geological information. The processed stack image by GEOBIT showed some geological structures such as faults and shallow gas hydrate seeping area indicated by strong BSR. The BSR in the stack image showed at TWT 3.07s between shot gather No 3940 to No 4120. The estimated gas seeping area occurred at the shot point No 4187 to No 4203 and it seems to have some minor faults at shot point No 3735, 3791, 3947 and 4120. According to the result of depth migration, the BSR showed as 2.3km below the sea bottom.

  • PDF

Hydrodynamic forces on blocks and vertical wall on a step bottom

  • Mondal, Ramnarayan;Alam, Md. Mahbub
    • Wind and Structures
    • /
    • 제30권5호
    • /
    • pp.485-497
    • /
    • 2020
  • A study, using potential water wave theory, is conducted on the oblique water wave motion over two fixed submerged rectangular blocks (breakwaters) placed over a finite step bottom. We have considered infinite and semi-infinite fluid domains. In both domains, the Fourier expansion method is employed to obtain the velocity potentials explicitly in terms of the infinite Fourier series. The unknown coefficients appearing in the velocity potentials are determined by the eigenfunction expansion matching method at the interfaces. The derived velocity potentials are used to compute the hydrodynamic horizontal and vertical forces acting on the submerged blocks for different values of block thickness, gap spacing between the two blocks, and submergence depth of the upper block from the mean free surface. In addition, the wave load on the vertical wall is computed in the case of the semi-infinite fluid domain for different values of blocks width and the incident wave angle. It is observed that the amplitudes of hydrodynamic forces are negligible for larger values of the wavenumber. Furthermore, the upper block experiences a higher hydrodynamic force than the lower block, regardless of the gap spacing, submergence depth, and block thickness.

온수지에서의 수온분포에 관한 연구 -우두온수지를 중심으로- (On the Distribution of Water Temperature in the Warm Water Pool. -On the Wudu Warm Water Pool-)

  • 연규석;최예환
    • 한국농공학회지
    • /
    • 제21권3호
    • /
    • pp.121-126
    • /
    • 1979
  • The objective of this study was to grasp the condition of the distribution of water temperature in the warm water pool, and these observations were performed in Wudu warm water pool located at Wodu-Dong in Chuncheon. The results summarized in this study are as follows; 1. The horizontal distribution charts of water temperature at each depth of points were shown as Fig. 3, Fig. 4, and Fig. 5, respectively. In consequence of the observation, the condition of warm water was stagnant in the coner of warm water pool. As the result, it was found out that stagnant condition was the heaviest at water surface (depth; 0.05m), more heavier at middle depth (depth; 0.55m) and some heavy at bottom of the pool (depth; 1.10m). 2. The vertical water temperature change was shown as Fig. 6, and the mean water temperature of water surface (depth;0.05m) was higher about $2.2{\sim}3.3^{\circ}C$ than bottom water temperature. 3. Therefore, it was required to device such structures as form of broad cannels or overflow diversion weirs to mingle with top and bottom water.

  • PDF

생태계 제어 시설물의 설계 및 배치 최적화(2) -흐름장에서의 인공어초의 침하 및 매몰 특성- (Structural and Layout Design Optimization of Ecosystem Control Structures (2) -Characteristics of Subsidence and Burial of Artificial Habitat due to Sediment Transport in Flow Field-)

  • 류청로;김현주;이한수;신동일
    • 한국수산과학회지
    • /
    • 제30권1호
    • /
    • pp.139-147
    • /
    • 1997
  • Sediment transport around artificial habitat which is induced by the change ol flow due to installation of the structure plays a role not only as a defect function of subsidence and burial but also bottom-environment control function. This study examined the characteristics of local scouring and deposition with sediment sizes, current velocities and installation direction of artificial habitat in flow field. Resultant subsidence and burial processes are investigated and discussed with Reynolds number. Together with sediment number and dimensionless time elapse, prediction formulas are established by combining these relationships. Bottom control function as cultivating effects is discussed with installation direction, and applicability of countermeasures is compared and stone pavement method is recommended.

  • PDF

Heavy Metal Leaching, CO2 Uptake and Mechanical Characteristics of Carbonated Porous Concrete with Alkali-Activated Slag and Bottom Ash

  • Kim, G.M.;Jang, J.G.;Naeem, Faizan;Lee, H.K.
    • International Journal of Concrete Structures and Materials
    • /
    • 제9권3호
    • /
    • pp.283-294
    • /
    • 2015
  • In the present study, a porous concrete with alkali activated slag (AAS) and coal bottom ash was developed and the effect of carbonation on the physical property, microstructural characteristic, and heavy metal leaching behavior of the porous concrete were investigated. Independent variables, such as the type of the alkali activator and binder, the amount of paste, and $CO_2$ concentration, were considered. The experimental test results showed that the measured void ratio and compressive strength of the carbonated porous concrete exceeded minimum level stated in ACI 522 for general porous concrete. A new quantitative TG analysis for evaluating $CO_2$ uptake in AAS was proposed, and the result showed that the $CO_2$ uptake in AAS paste was approximately twice as high as that in OPC paste. The leached concentrations of heavy metals from carbonated porous concrete were below the relevant environmental criteria.

Efficiency of TLDs with bottom-mounted baffles in suppression of structural responses when subjected to harmonic excitations

  • Shad, Hossein;Adnan, Azlan;Behbahani, Hamid Pesaran;Vafaei, Mohammadreza
    • Structural Engineering and Mechanics
    • /
    • 제60권1호
    • /
    • pp.131-148
    • /
    • 2016
  • Tuned Liquid Dampers (TLDs) provide low damping when it comes to deep water condition, and that not all water depth is mobilized in energy dissipation. This research focussed on a method to improve the efficiency of TLDs with deep water condition. Several bottom-mounted baffles were installed inside a TLD and the dynamic characteristics of modified TLDs together with their effect on the vibration control of a SDOF structure were studied experimentally. A series of free vibration and harmonic forced vibration tests were carried out. The controlling parameter in the conducted tests was the Vertical Blocking Ratio (VBR) of baffles. Results indicated that increase in VBR decreases the natural frequency of TLD and increases its damping ratio. It was found that the VBR range of 10% to 30% reduced response of the structure significantly. The modified TLD with the VBR of 30% showed the best performance when reduction in structural responses under harmonic excitations were compared.

전산 유체 역학(CFD)을 이용한 원형 양식 사육 수조 내부 유동장 해석 (Analysis of land-based circular aquaculture tank flow field using computational fluid dynamics (CFD) simulation)

  • 권인영;김태호
    • 수산해양기술연구
    • /
    • 제56권4호
    • /
    • pp.395-406
    • /
    • 2020
  • The objectives of this study were to develop the optimal structures of recirculating aquaculture tank for improving the removal efficiency of solid materials and maintaining water quality conditions. Flow analysis was performed using the CFD (computational fluid dynamics) method to understand the hydrodynamic characteristics of the circular tank according to the angle of inclination in the tank bottom (0°, 1.5° and 3°), circulating water inflow method (underwater, horizontal nozzle, vertical nozzle and combination nozzle) and the number of inlets. As the angle in tank bottom increased, the vortex inside the tank decreased, resulting in a constant flow. In the case of the vertical nozzle type, the eddy flow in the tank was greatly improved. The vertical nozzle type showed excellent flow such as constant flow velocity distribution and uniform streamline. The combination nozzle type also showed an internal spiral flow, but the vortex reduction effect was less than the vertical nozzle type. As the number of inlets in the tank increased, problems such as speed reduction were compensated, resulting in uniform fluid flow.

유체 충격압력 시계열의 모델링에 관한 기초 연구 (A Fundamental Study for Time History Modeling of Fluid Impact Pressure)

  • 노인식;이재만;염철웅
    • 대한조선학회논문집
    • /
    • 제47권2호
    • /
    • pp.242-247
    • /
    • 2010
  • To consider effects of essential parameters of water impact pressure on dynamic structural responses of bow bottom structures, a parametric study for a ship bottom panel is carried out. The idealized pressure time history models were assumed by triangular and rectangular shapes in time domain. The main loading parameters are duration time and peak pressure value maintaining the same impulse value. The structural models for local bottom stiffened panels of a container ship are analysed. The natural frequency analysis and transient dynamic response analysis are performed using MSC/NASTRAN. Added mass effects of contacting water are considered and the pressure distributions are assumed to be uniform in the whole water contacting surface. The effects of loading parameters on the structural responses, especially maximum displacements, are considered. Besides the peak pressure value, effects of duration time correlated with natural frequencies are thought to be the important parameters.

Impact Analysis on the Coastal Erosion and Accretion due to Relocation of the Breakwaters

  • Lee, Seung-Chul;Lee, Joong-Woo;Kim, Kang-Min;Kim, Ki-Dam
    • 한국항해항만학회지
    • /
    • 제32권4호
    • /
    • pp.305-313
    • /
    • 2008
  • Recently it was known that the problems of nearshore processes and damage of berth and counter facilities frequently had appeared at the small fishery port, such as Daebang near Samcheonpo city, Korea. Here we try to analyze the impact of the rearrangement of counter facilities and berth layout adopted for tranquility of its inner harbor. Because this harbor is being connected to Daebang channel, the rearrangement of the structures might affect to the current speed and direction and wave height, so do to the sea bottom undulation. Therefore, we made model test for the several layouts of the berth and breakwater in this area. Numerical model result shows that the bottom was eroded by 1m by tidal currents and the speed of flow did not shrink, even after the construction work was completed. The direction of the sand movement was downdrift. Although the model study gave reasonable description of beach processes and approach channel sedimentation mechanism, it is necessary to compare with the field history, including the records of waves, tides and bottom materials, etc. for better prediction.

Influence of geometric configuration on aerodynamics of streamlined bridge deck by unsteady RANS

  • Haque, Md. N.;Katsuchi, Hiroshi;Yamada, Hitoshi;Kim, Haeyoung
    • Wind and Structures
    • /
    • 제28권5호
    • /
    • pp.331-345
    • /
    • 2019
  • Long-span bridge decks are often shaped as streamlined to improve the aerodynamic performance of the deck. There are a number of important shaping parameters for a streamlined bridge deck. Their effects on aerodynamics should be well understood for shaping the bridge deck efficiently and for facilitating the bridge deck design procedure. This study examined the effect of various shaping parameters such as the bottom plate slope, width ratio and side ratio on aerodynamic responses of single box streamlined bridge decks by employing unsteady RANS simulation. Steady state responses and flow field were analyzed in detail for wide range of bottom plate slopes, width and side ratios. Then for a particular deck shape Reynolds number effect was investigated by varying its value from $1.65{\times}10^4$ to $25{\times}10^4$. The aerodynamic response showed very high sensitivity to the considered shaping parameters and exhibited high aerodynamic performance for a particular combination of shaping parameters.