• 제목/요약/키워드: Boring machine

검색결과 159건 처리시간 0.023초

A hybrid MC-HS model for 3D analysis of tunnelling under piled structures

  • Zidan, Ahmed F.;Ramadan, Osman M.
    • Geomechanics and Engineering
    • /
    • 제14권5호
    • /
    • pp.479-489
    • /
    • 2018
  • In this paper, a comparative study of the effects of soil modelling on the interaction between tunnelling in soft soil and adjacent piled structure is presented. Several three-dimensional finite element analyses are performed to study the deformation of pile caps and piles as well as tunnel internal forces during the construction of an underground tunnel. The soil is modelled by two material models: the simple, yet approximate Mohr Coulomb (MC) yield criterion; and the complex, but reasonable hardening soil (HS) model with hyperbolic relation between stress and strain. For the former model, two different values of the soil stiffness modulus ($E_{50}$ or $E_{ur}$) as well as two profiles of stiffness variation with depth (constant and linearly increasing) were used in attempts to improve its prediction. As these four attempts did not succeed, a hybrid representation in which the hardening soil is used for soil located at the highly-strained zones while the Mohr Coulomb model is utilized elsewhere was investigated. This hybrid representation, which is a compromise between rigorous and simple solutions yielded results that compare well with those of the hardening soil model. The compared results include pile cap movements, pile deformation, and tunnel internal forces. Problem symmetry is utilized and, therefore, one symmetric half of the soil medium, the tunnel boring machine, the face pressure, the final tunnel lining, the pile caps, and the piles are modelled in several construction phases.

연약지반의 강성도 측정을 위한 관입형 벤더 엘리먼트 프로브의 개발 및 적용 (Development and Application of Penetration-type Bender Elements Probe for Stiffness Measurements of Soft Soils)

  • 목영진;정재우;김학성
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2008년도 춘계 학술발표회 초청강연 및 논문집
    • /
    • pp.119-126
    • /
    • 2008
  • Ground stiffness(shear wave velocity) is one of the key parameters in geotechnical earthquake engineering. An In-situ seismic technique has its own advantages and disadvantages over the others in stiffness measurements. By combining the crosshole and seismic cone techniques and utilizing favourable features of bender elements, a new hybrid probe has been developed in order to enhance data quality and easiness of testing. The basic structure of the probe, called "MudFork", is a fork composed of two blades, on each of which source and receiver bender elements were mounted respectively. To evaluate the disturbance caused by the penetration of the probe, shear wave velocity measurements were carried out in the Kaolinite slurry in the laboratory. Finally, the probe was penetrated in coastal mud near Incheon, Korea, using SPT(standard penetration test)rods pushed with a routine boring machine and shear wave velocity measurements were carried out. The results were verified with data from laboratory and cone testing. The performance of the probe turns out to be excellent in terms of data quality and testing convenience.

  • PDF

현장 굴진자료 분석에 의한 TBM 성능예측모델의 적용성 평가 (Evaluation of the applicability of TBM performance prediction models based on field data)

  • 오기열;장수호;김상환
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2008년도 춘계 학술발표회 초청강연 및 논문집
    • /
    • pp.803-812
    • /
    • 2008
  • Along with the increasing demand for automatic and mechanical tunnel excavation methods in Korea, the Tunnel Boring Machine (TBM) method of tunnel excavation has become increasingly popular. However, in spite of this rising demand, few studies have been performed on the TBM method, in Korea. For this reason, this study focused on evaluation of the applicability of TBM performance prediction models based on field data in order to contribute to the basic and essential parts of TBM designation and the TBM method of tunnel excavation in Korea. These rock properties can be defined as the mechanical and physical factors of rock that have an influence on a disc cutter's ability to cut rock, and provide information for the evaluation of the applicability of field data. Based on outcomes from these tests, applicability of the prediction model was evaluated and the predicted performance of a TBM was compared with real field data obtained from four different TBM construction sites in Korea.

  • PDF

Laboratory considerations about frictional force on pipe surface when slurry machine is used

  • Khazaei Saeid;Shimada Hideki;Kawai Takashi;Yotsumoto Jyunichi;Sato Iwao;Matsui Kikuo
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 한국지구물리탐사학회 2003년도 Proceedings of the international symposium on the fusion technology
    • /
    • pp.214-220
    • /
    • 2003
  • Pipe jacking is a name for a method to excavate a tunnel by pushing pipe into the ground from an especial pit. Size of tunnels in this method is different from under 900mm (microtunneling) to more than 3,000mm. Method of excavation is also different from hand digging to use of any kind of tunnel boring machines such as slurry and earth pressure balance (EPB) machines. Slurry pipe jacking was firmly established as a special method for the nondisruptive construction of the underground tunnels in urban area. During the pipe jacking and microtunneling process, the jacking load is an important parameter, controlling the pipe wall thickness, need to and location of intermediate jacking station, selection of jacking frame and lubrication requirements. The main component of the jacking load is due to frictional resistance. In this paper the skin friction between pipe surface and surrounding condition also lubricant quality based on a few fundamental tests, were considered. During this study unconfined compressive strength test, dynamic friction measurement test and direct shear box test were raised for one of the largest diameter slurry pipe jacking project in Fujisawa city in Japan. It could be concluded that in slurry pipe jacking, prediction of frictional forces are mainly dependent on successful lubrication, its quality and lubricant strength parameters. Conclusions from this study can be used for the same experiences.

  • PDF

동근형상가공의 형상모델링과 예측에 관한 연구 (A Study on the Modeling and Prediction of Machined Profile in Round Shape Machining)

  • 윤문철
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2000년도 춘계학술대회논문집 - 한국공작기계학회
    • /
    • pp.659-664
    • /
    • 2000
  • In this paper, We have discussed on the modeling of machined outer geometry which was established for the case of round shape machining, also the effects of externally machined profile are analyzed and its modeling realiability was verified by the experiments of roundness testing, especially in lathe operation. In this study, we established harmonic geometric model with the parameter harmonic function. In general, we can calculate the theoretical roundness profile with arbitrary multilobe parameter. But in real experiments, only 2-5 lobe profile was frequently measured. the most frequently ones are 3 and 5 lobe profile in experiments. With this results, we can predict that these results may be applies to round shape machining such as turning, drilling, boring, ball screw and cylindrical grinding operation in bearing and shaft making operation with the same method. In this study, simulation and experimental work were performed to show the profile behaviors. we can apply these new modeling method in real process for the prediction of part profile behaviors machined such as in round shape machining operation.

  • PDF

현장시험을 통한 DEW 지압형 앵커의 적용성평가 (Application of DEW Anchor with Field Test)

  • 최경집;박우영;유성진;이성락
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2009년도 세계 도시지반공학 심포지엄
    • /
    • pp.745-751
    • /
    • 2009
  • The anchor is used extensively for a cutting slope, an earth retaining wall, an uplift resistance of sub-structures and so on at civil engineering projects and is classified by aim in use, tendon material, and ground/tension fixing type. It can be distinguished extensively into friction type, bearing type, and complex type by ground fixing type. Generally, bond length of friction type anchor has application to 3~10m depending on the friction-resistance characteristics. In this study, 'DEW(double enlargement wedge) bearing type anchor' of new concept is devised. The bond length is about 0.6~0.8m. It can be used on the ground to have the strength characteristics above it of weathered rock. There are merits which are 'period reduction' and 'cost saving' through the minimum of the boring length. In addition, it is so called environmentally friendly Methods because it can reduce the quantity of carbon dioxide through the reducing drilling machine operation time.

  • PDF

국내 중저심도(20~80m) 수직구에 적합한 Stage-Cut 공법 개발 (Development of Stage-Cut Method for medium depth Shaft in Korea)

  • 홍창수;이지수;황대진
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2009년도 세계 도시지반공학 심포지엄
    • /
    • pp.1522-1529
    • /
    • 2009
  • When a shaft is excavated in Korea, the mechanized method such as RBM(Raise Boring Machine) or RC(Raise Climber) is used independently of depth. But usually, the mechanized method is useful for the deep depth. On the contrary, when the depth of shaft is short, the cost of excavation increase. So in the case of shaft constructon less than 100m, we need to consider more suitable method of shaft construction such as Stage-cut which is one of blasting methods. Stage-Cut is widely used in the field of shaft construction in Japan as a tool of rock excavation. The main purpose of this study is to provide technical guidance for design and construction of shafts in rock, using Stage-cut method which is suitable for 20m~80m depth shaft. In this study, Blasting tests was performed in field, according to rock classification. Finally, the stage-cut method which is suitable for the geology of Korea was developed.

  • PDF

모델 검사를 위한 Simulink 디버거의 기능 개선 (Improvement of a Simulink Debugger Capacity for Model Verification)

  • 김성조;이홍석;최경희;정기현
    • 정보처리학회논문지D
    • /
    • 제17D권2호
    • /
    • pp.111-118
    • /
    • 2010
  • 본 논문에서는 Simulink로 모델 검사를 위한 향상된 기능을 가진 디버거의 구현에 대해 기술한다. Simulink에서 기본적으로 제공되는 디버그 기능은 복잡한 시나리오나 복잡한 모델을 검사할 때 단순 반복적인 작업이 다수 요구되었다. 이를 개선하기 위해서 본 연구에서는 임의의 시나리오에 따른 시뮬레이션 결과와 예상한 결과를 확인할 수 있는 기능, 원하는 시점에서 시스템의 변화를 확인하는 기능, 임의의 혹은 전체 시나리오에 대한 시스템의 Coverage Report 기능 등이 구현된 Simulink 디버거에 대해 소개하고 구현에 대한 이슈를 기술한다. 이 프로그램을 Matlab에서 제공하는 자판기 모델에 적용해서 그 유용성을 확인했다.

Investigation of ratio of TBM disc spacing to penetration depth in rocks with different tensile strengths using PFC2D

  • Sarfarazi, Vahab;Haeri, Hadi;Shemirani, Alireza Bagher;Hedayat, Ahmadreza;Hosseini, Seyed Shahin
    • Computers and Concrete
    • /
    • 제20권4호
    • /
    • pp.429-437
    • /
    • 2017
  • In this study, the effect of the tensile strength and ratio of disc spacing to penetration depth on the efficiency of tunnel boring machine (TBM) is investigated using Particle flow code (PFC) in two dimensions. Models with dimensions of $150{\times}70mm$ made of rocks with four different tensile strength values of 5 MPa, 10 MPa, 15 MPa and 20 MPa were separately analyzed and two "U" shape cutters with width of 10 mm were penetrated into the rock model by velocity rate of 0.1 mm/s. The spacing between cutters was also varied in this study. Failure patterns for 5 different penetration depths of 3 mm, 4 mm, 5 mm, 6 mm, and 7 mm were registered. Totally 100 indentation test were performed to study the optimal tool-rock interaction. An equation relating mechanical rock properties with geometric characteristics for the optimal TBM performance is proposed. The results of numerical simulations show that the effective rock-cutting condition corresponding to the minimum specific energy can be estimated by an optimized disc spacing to penetration depth, which, in fact, is found to be proportional to the rock's tensile strength.

Simplified Failure Mechanism for the Prediction of Tunnel Crown and Excavation Front Displacements

  • Moghaddam, Rozbeh B.;Kim, Mintae
    • 자연, 터널 그리고 지하공간
    • /
    • 제21권1호
    • /
    • pp.101-112
    • /
    • 2019
  • This case study presented a simplified failure mechanism approach used as a preliminary deformation prediction for the Mexico City's metro system expansion. Because of the Mexico City's difficult subsoils, Line 12 project was considered one of the most challenging projects in Mexico. Mexico City's subsurface conditions can be described as a multilayered stratigraphy changing from soft high plastic clays to dense to very dense cemented sands. The Line 12 trajectory crossed all three main geotechnical Zones in Mexico City. Starting from to west of the City, Line 12 was projected to pass through very dense cemented sands corresponding to the Foothills zone changing to the Transition zone and finalizing in the Lake zone. Due to the change in the subsurface conditions, different constructions methods were implemented including the use of TBM (Tunnel Boring Machine), the NATM (New Austrian Tunneling Method), and cut-and-cover using braced Diaphragm walls for the underground section of the project. Preliminary crown and excavation front deformations were determined using a simplified failure mechanism prior to performing finite element modeling and analysis. Results showed corresponding deformations for the crown and the excavation front to be 3.5cm (1.4in) and 6cm (2.4in), respectively. Considering the complexity of Mexico City's difficult subsoil formation, construction method selection becomes a challenge to overcome. The use of a preliminary results in order to have a notion of possible deformations prior to advanced modeling and analysis could be beneficial and helpful to select possible construction procedures.