• Title/Summary/Keyword: Bordeaux mixture

Search Result 54, Processing Time 0.027 seconds

Studies on the Prevention of Gleosporium Thea sinensis on the Tea Plant in Korea (한국산(韓國産) 다수(茶樹)의 엽수병방제(葉銹病防除)에 관(關)한 연구(硏究))

  • Kim, Jai-Saing;Choi, Jai-Sik
    • Journal of Korean Society of Forest Science
    • /
    • v.76 no.4
    • /
    • pp.357-360
    • /
    • 1987
  • 1. The hair cells on adaxial surface turned out to be penetration way of Gleosporium Thea sinensis in tea plant. 2. The most parts of Gleosporium Thea sinensis generated in tea plant were young leaves with first-fifth leaves from tip of shoot. 3. The proper temperature for spore germination on leaf is $25-27^{\circ}C$, soaked by water for 12 hours. 4. For prevention of Gleosporium Thea sinensis the drug-spay in tea plant would be the most effective when sprayed at this temperature range, and the control of Gleosporium Thea sinensis would be possible through selection of tea plant with few hairs. 5. The treatment of bordeaux mixture to prevent growth of conidiospore was 48.3% more effective than in control plot which were not sprayed. 6. The effect of sprayed bordeaux mixture decreased to about 28.5% after one week of spray.

  • PDF

Effect of Various Fungicides on Pollen Germination and Pollen Tube Growth in Some Fruit Trees (각종 살균제(殺菌劑)가 주요과수(主要果樹)의 화분발아(花粉發芽) 및 화분관신장(花粉管伸長)에 미치는 영향(影響))

  • Ku, Ja-Hyeong;Lee, Jae-Chang
    • Korean Journal of Agricultural Science
    • /
    • v.5 no.1
    • /
    • pp.7-14
    • /
    • 1978
  • The experiment was carried out in order to choose fungicides which are proper to be used in flowering time of fruit trees. The effect of fungicides on pollen germination and pollen tube growth was investigated in vitro. The results obtained are as follows : 1. Difolatan-Wp, Lime-sulfur, Captan-Wp and Bordeaux mixture greatly inhibited pollen germination and pollen tube growth. 2. The effect of Daconil-Wp and Zimaneb-Wp on pollen germination and pollen tube growth was not so great as that of Difolatan-Wp, Lime-sulfur, Captan-Wp or Bordeaux mixture. 3. Polyram-combi-Wp, Topsin-Wp and Benlate-Wp did not affect pollen germination but these fungicides slightly inhibited pollen tube growth. 4. Polyoxin-Wp significantly increased pollen tube growth but did not show promotive effect on pollen germinaiton.

  • PDF

Applications of Organic Fungicides Reduce Photosynthesis and Fruit Quality of Apple Trees

  • Bhusal, Narayan;Kwon, Jun Hyung;Han, Su-Gon;Yoon, Tae-Myung
    • Horticultural Science & Technology
    • /
    • v.34 no.5
    • /
    • pp.708-718
    • /
    • 2016
  • Two different pest control programs were applied on 8-year-old 'Ryoka'/M.26 apple trees (Malus domestica Borkh.). Lime sulfur or Bordeaux mixture with emulsified oil were applied 12 times from late March to mid-September as organic treatment, and synthetic chemicals were 7 times applied as control treatment. Over the entire apple-growing season, photosynthesis rates of apple trees were significantly lower in the organic treatment than in the control, and this photosynthetic differences were larger in July and August. Photosynthesis-related parameters such as stomatal conductance and transpiration behaved similarly to photosynthesis. The leaf area in the organic treatment was significantly smaller ($24.7cm^2$) than that in the control treatment ($30.7cm^2$). Organic leaves contained significantly less Chl. a ($15.5mg{\cdot}g^{-1}$) than did control leaves ($17.6mg{\cdot}g^{-1}$). Fruit yield per tree was significantly lower in the organic treatment (18.8 kg) than in the control (24.5 kg), because organic fruits experienced a higher rate of disease infection such as white rot (Botryosphaeria dothidae) and bitter rot (Glomerella cingulata) than did control fruits. Organic fruits had high flesh firmness but less color development (lower Hunter's a values). In this experiment, the pest control program with frequent applications of organic fungicides showed negative effects on photosynthesis and disease infection on leaves and fruits, and thus reduce the fruit quality and yield in 'Ryoka'/M.26 apple trees.

Control Efficiency for Ginseng Anthracnose by Eco-Friendly Organic Materials (유기농업자재를 이용한 인삼 탄저병의 친환경 방제효과)

  • Kim, Woo Sik;Park, Jee Sung;Ahn, In;Park, Kyung Hoon;Kim, Ki Hong
    • Korean Journal of Medicinal Crop Science
    • /
    • v.22 no.4
    • /
    • pp.270-275
    • /
    • 2014
  • This study was conducted to select and develop effect of eco-friendly organic materials for the eco-friendly prevention of Anthracnose occurred in the ginseng. Anthracnose on ginseng is occurred by Colletotrichum gloeosporioides and the crop damage is severe especially from July to August after rainy season. The test results showed that control effect by test products materials on the three years ginseng and four years ginseng field was lower in eco-friendly organic materials than that of chemical pesticide. However, the control effect of bordeaux mixture was higher with 71.3% and 73.8% levels than those of mineral matter, microbial agent, and developed plants extract mixtures (Eugenol, Curcumin, Wood vinegar, etc). On the other hand, three types of developed plants extract mixtures (3 types) showed control effect in a range of from 58.1% to 63.6% against Anthracnose which was higher as compared with plant extract alone and sodium silicate regardless of ages of ginseng. The results of this study would attribute in verifying the control effect of eco-friendly materials against Anthracnose for ginseng through investigating antimicrobial compounds contained in the plants body. Also, it would be used as control method against Anthracnose occurred in ginseng by judging the right control time through monitoring occurrence of disease.

LIfe Cycle Assessment(LCA) for Calculation of the Carbon Emission Amount of Organic Farming Material -With Oyster-shell, Expanded Rice Hull, Bordeaux Mixture Liquid- (유기농자재의 탄소배출량 산정을 위한 전과정평가(LCA) -패화석, 팽연왕겨, 보르도액을 중심으로-)

  • Yoon, Sung-Yee;Yang, Dong-Wook
    • Korean Journal of Organic Agriculture
    • /
    • v.20 no.4
    • /
    • pp.475-490
    • /
    • 2012
  • Since 1997, Korean Ministry of Knowledge Economy and Ministry of Environment have established data on some 400 basic raw and subsidiary materials and process like energy, petro-chemical, steel, cement, glass, paper, construction materials, transportation, recycling and disposal etc by initiating establishment of LCI database. Regarding agriculture, Rural Development Administration has conducted establishment of LCI database for major farm products like rice, barley, beans, cabbage and radish etc from 2009, and released that they would establish LCI database for 50 items until 2020 later on. The domestic LCI database for seeds, seedling, agrochemical, inorganic, fertilizer and organic fertilizer etc is only at initial stage of establishment, so overseas LCI databases are brought and being used. However, since the domestic and overseas natural environments differ, they fall behind in reliability. Therefore, this study has the purpose to select organic farming materials, survey the production process for various types of organic farming materials and establish LCI database for the effects of greenhouse gas emitted by each crop during the process. As for selecting methods, in this study organic farming materials were selected in the method of direct observation of material and bottom-up method a survey method with focus on the organic farming materials admitted into rice production. For the basic unit of carbon emission amount by the production of 1kg of organic farming material, the software PASS 4.1.1 developed by Korea Accreditation Board under Ministry of Knowledge Economy was used. The study had the goal to ultimately provide basic unit to calculate carbon emission amount in executing many institutions like goal management system and carbon performance display system etc in agricultural sector to be conducted later on. As a result, emission basic units per 1kg of production were calculated to be 0.04968kg-$CO_2$ for oystershells, 0.004692kg-$CO_2$ for expanded rice hull, and 1.029kg-$CO_2$ for bordeaux mixture liquid.

Control of Pepper Anthracnose Caused by Colletotrichum acutatum using Alternate Application of Agricultural Organic Materials and Iminoctadine tris + thiram (유기농업자재와 유기합성 살균제(Iminoctadine tris + thiram) 교호살포에 따른 고추 탄저병 방제 효과)

  • Hong, Sung-Jun;Kim, Yong-Ki;Jee, Hyeong-Jin;Shim, Chang-Ki;Kim, Min-Jeong;Park, Jong-Ho;Han, Eun-Jung;Kim, Jung-Hyun;Kim, Seok-Cheol
    • The Korean Journal of Pesticide Science
    • /
    • v.19 no.4
    • /
    • pp.428-439
    • /
    • 2015
  • Pepper anthracnose caused by Collectotrichum acutaum has been known as one of the most damaging diseases of pepper, which has reduced not only yield but also quality of pepper produce almost every year. This study was conducted to develop control strategy against pepper anthracnose by alternate application of agricultural organic materials and chemical fungicides. The alternate application effect of agricultural organic materials and chemical fungicides for controlling pepper anthracnose were examined in vitro and in the field. First, thirteen microbial agents and twenty two agricultural organic materials were screened for antifungal activity against C. acutatum through the dual culture method and bioassay. As a result, one microbial agent (Bacillus subtilis QST-713) and three agricultural organic materials (sulfur, bordeaux mixture, marine algae extracts) were found to show high inhibition effect against C. acutatum. In the field test, when Iminoctadine tris+thiram, a chemical fungicide for controlling pepper anthracnose, was sprayed, it reduced disease incidence by 89.5%. Meanwhile Sulfur, bordeaux mixture, copper, marine algae extracts and Bacillus subtilis QST-713 showed low disease incidence at the range of 33.1~81.0%. However, when Iminoctadine tris+thiram and agricultural organic materials(bordeaux mixture, marine algae extracts) were applied to pepper fruits alternately two times at 7 days interval, there was a 81.7 and 87.1% reduction in disease, respectively. Consequently, the alternate spray of chemical fungicide (Iminoctadine tris+thiram) and agricultural organic materials (bordeaux mixture, marine algae extracts) could be recommended as a control method to reduce the using amount of chemical fungicide.