• Title/Summary/Keyword: Bootstrap confidence limits

Search Result 6, Processing Time 0.022 seconds

Better Confidence Limits for Process Capability Index $C_{pmk}$ under the assumption of Normal Process (정규분포 공정 가정하에서의 공정능력지수 $C_{pmk}$ 에 관한 효율적인 신뢰한계)

  • Cho Joong-Jae;Park Byoung-Sun;Park Hyo-il
    • Journal of Korean Society for Quality Management
    • /
    • v.32 no.4
    • /
    • pp.229-241
    • /
    • 2004
  • Process capability index is used to determine whether a production process is capable of producing items within a specified tolerance. The index $C_{pmk}$ is the third generation process capability index. This index is more powerful than two useful indices $C_p$ and $C_{pk}$. Whether a process distribution is clearly normal or nonnormal, there may be some questions as to which any process index is valid or should even be calculated. As far as we know, yet there is no result for statistical inference with process capability index $C_{pmk}$. However, asymptotic method and bootstrap could be studied for good statistical inference. In this paper, we propose various bootstrap confidence limits for our process capability Index $C_{pmk}$. First, we derive bootstrap asymptotic distribution of plug-in estimator $C_{pmk}$ of our capability index $C_{pmk}$. And then we construct various bootstrap confidence limits of our capability index $C_{pmk}$ for more useful process capability analysis.

Bootstrap control limits of process control charts for correlative process data

  • Suzuki Hideo
    • Proceedings of the Korean Society for Quality Management Conference
    • /
    • 1998.11a
    • /
    • pp.174-179
    • /
    • 1998
  • This research explores the application of the bootstrap methods to the construction of control limits for the x charts and the EWMA charts based on single observations with stationary autoregressive processes. The subsample means-based control chars in the presence autocorrelation are also considered. We use a technique for inferring confidence intervals using bootstrap, the percentile method. Simulation studies are conducted to compare the performance of the bootstrap method and that of standard method for constructing control charts under several conditions.

  • PDF

Median Control Chart using the Bootstrap Method

  • Lim, Soo-Duck;Park, Hyo-Il;Cho, Joong-Jae
    • Communications for Statistical Applications and Methods
    • /
    • v.14 no.2
    • /
    • pp.365-376
    • /
    • 2007
  • This research considers to propose the control charts using median for the location parameter. In order to decide the control limits, we apply several bootstrap methods through the approach obtaining the confidence interval except the standard bootstrap method. Then we illustrate our procedure using an example and compare the performance among the various bootstrap methods by obtaining the length between control limits through the simulation study. The standard bootstrap may be apt to yield shortest length while the bootstrap-t method, the longest one. Finally we comment briefly about some specific features as concluding remarks.

$\bar{X}$ control charts of automcorrelated process using threshold bootstrap method (분계점 붓스트랩 방법을 이용한 자기상관을 갖는 공정의 $\bar{X}$ 관리도)

  • Kim, Yun-Bae;Park, Dae-Su
    • Journal of Korean Society for Quality Management
    • /
    • v.28 no.2
    • /
    • pp.39-56
    • /
    • 2000
  • ${\overline{X}}$ control chart has proven to be an effective tool to improve the product quality. Shewhart charts assume that the observations are independent and normally distributed. Under the presence of positive autocorrelation and severe skewness, the control limits are not accurate because assumptions are violated- Autocorrelation in process measurements results in frequent false alarms when standard control chats are applied in process monitoring. In this paper, Threshold Bootstrap and Moving Block Bootstrap are used for constructing a confidence interval of correlated observations. Monte Carlo simulation studies are conducted to compare the performance of the bootstrap methods and that of standard method for constructing control charts under several conditions.

  • PDF

Bootstrap Confidence Regions of 2-dimensional Vector-valued Process Capability Indices $C_p\;and\;C_{pk}$

  • Park Byoung-Sun;Nam Kyung-Hyun;Cho Joong-Jae
    • Proceedings of the Korean Society for Quality Management Conference
    • /
    • 2004.04a
    • /
    • pp.70-75
    • /
    • 2004
  • In actual manufacturing industries, process capability indices(PCI) are used to determine whether a production process is capable of producing items within a specified specification limits. We study some vector-valued PCIs $C_p=(C_{px},\;C_{py})$ and $C_{pk}=(C_{pkx},\; C_{pky})$ in this article. We propose some asymptotic confidence regions of PCIs with bootstrapping and examine the performance of those asymptotic confidence regions under the assumption of bivariate normal distribution.

  • PDF

Microbial Quality Change Model of Korean Pan-Fried Meat Patties Exposed to Fluctuating Temperature Conditions

  • Kim, So-Jung;An, Duck-Soon;Lee, Hyuek-Jae;Lee, Dong-Sun
    • Preventive Nutrition and Food Science
    • /
    • v.13 no.4
    • /
    • pp.348-353
    • /
    • 2008
  • Aerobic bacterial growth on Korean pan.fried meat patties as a primary quality deterioration factor was modeled as a function of temperature to estimate microbial spoilage on a real.time basis under dynamic storage conditions. Bacteria counts in the stretch.wrapped foods held at constant temperatures of 0, 5, 10 and $15^{\circ}C$ were measured throughout storage. The bootstrapping method was applied to generate many resampled data sets of mean microbial counts, which were then used to estimate the parameters of the microbial growth model of Baranyi & Roberts in the form of differential equations. The temperature functions of the primary model parameters were set up with confidence limits. Incorporating the temperature dependent parameters into the differential equations of bacterial growth could produce predictions closely representing the experimental data under constant and fluctuating temperature conditions.