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Abstract

This research explores the application of the bootstrap methods to the construction of
control limits for the z charts and the EWMA charts based on single observations with sta-
tionary autoregressive processes. The subsample means-based control chars in the presence
autocorrelation are also considered. We use a technique for inferring confidence intervals
using bootstrap, the percentile method. Simulation studies are conducted to compare the
performance of the bootstrap method and that of standard method for constructing control
charts under several conditions.

1. Introduction

Statistical process control (SPC) techniques are widely used in industry for process mon-
itoring and quality improvement. Various statistical control charts have been developed to
monitor the process mean and variance. Traditional SPC charts, including the Shewhart, the
exponential weighted moving average (EWMA) and the cumulative sum (CUSUM) charts,
are based on a fundamental assumption that process data are statistically independent and
normally distributed when the process are in control. In practice, however, process data
are not always independent from each other; in continuous process industries such as the’
chemical industry, most process data are autocorrelated. In such conditions, the traditional -
SPC methods may not be appropriate for monitoring, controlling and improving process
quality. Various authors have considered the effect of data correlation on control charts {
Alwan and Radson (1992), Montegomery and Mastrangelo(1991), Wardell, Moskowitz and
Plante(1992), and Zhang(1998)).

The bootstrap is a powerful computer-based method, and is useful if complicated models
seem necessary, since mathematical complication is no impediment to a bootstrap analysis
of accuracy. The concept of bootstrapping was theoretically by Efron (1979 and 1987).
Some authors discussed the use of bootstrap with quality control ( Franklin and Wasserman
(1992), and Seppla, Moskowitz, Plante and Tang (1995)). Seppla, Moskowitz, Plante and
Tang (1995) proposed a bootstrap approach for assessing process control limits of Z and s?
charts. The bootstrap may also be useful in designing control charts for correlated process
data. This resarch explores the application of the bootstrap methods to the construction
of control limits for the = charts and the EWMA charts based on single observation with
stationary autoregressive processes. The subsample means-based control ( & ) chars in the
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presence autocorrelation are also considered. We use a technique for inferring confidence
intervals using bootstrap; the percentile method, proposed by Efron (1987). Simulation
studies are conducted to compare the performance of the bootstrap method and that of the
standard methods for designing control charts under several conditions.

2. Process Models and Standard Control Charts

2.1 Models

In this study, we assume that processes follow a first-order stationary autoregressive model,
AR(1). That is,

zr=(1—~¢1)p+ dr12e—1 + & (1)

where x; is the process data at time ¢, p is the mean of the process, ¢; is the autoregressive
parameter, |#;] < 1, and ¢; are independent and identically distributed normal random
variables with mean 0 and variance o2. Without loss of generality, we assume g = 0 and

oc =1, and thus E(z;) = 0 and V(z;) = 1/(1 — ¢2).

2.2 Standard methods

z charts

The x charts are merely a plot of the each single process data. In practice, parameters
for the process mean and variance are usually not known and must be estimated. Such
estimates are usually based on past samples taken when the process assumed to be in-
control. Therefore, the upper and lower control limits of = chart for the stationary process,
which are similar to the traditional = chart for an independent process, are given by

fi + Lo6g, (2)

where fi and G, are an estimate of the process mean and of the process standard deviation
in equation (1) respectively. L, is usually equal to 3, which means that the significance level
of the three sigma control limits is supposed to be 0.27%.

EWMA charts

The exponentially weighted moving average (EWMA) charts are designed to detect small
shifts in the mean more quickly than the = charts by giving exponential weight to past data.
For the EWMA charts, the static that is plotted can be thought as a forcast which is a
weighted sum of the current data and previcus periods’ forecast. If we call the forecast at
time ¢ z;, then we can write

Zp = A.’L‘t-l-(l-*A)Zg, . (3)
where A (0 < A < 1) is a smoothing parameter which determines the weight given to past

data. When A is large, relatively little weight is given to older data. As A becomes smaller,
more weight is given to the older weight. The upper and lower control limits of the EWMA

chart are
. . /A
Hn + LZO'T, m, (4)
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where L, is a multiplier usually assumed to be 3.

Z charts

Most studies for autocorrelation on SPC methods have been confined to control charts
based on single observations. We study the property of the subsample-based control charts,
the Z charts, in the presence of autocorrelation. In the case we consider, sequential samples
are periodically drawn from the process and sample means are plotted through time on the
z chart. The upper and lower control limits for the Z chart are given by

0z

giLf\/ﬁ, | (5)

where L;z is also usually equal to 3.

3. Bootstrap Control limits

3.1 Bootstrap

We use a model-based bootstrapping in the time series analysis. The idea is to fit a
suitable process model to the process data, to construct residual from the fitted model, and
then to generate new series by incorporating random samples from residual into the fitted
model. Now, we have the observed process data, z1,z3,..., 5, which are assumed to be
in-control and follow the AR(1) model. ‘

The balanced bootstrap algorithm for assessing process control limits with single process
data is given as follows:

1. Estimate the autoregressive parameter ¢; by solving the Yule Walker equation.

2. Calculate original residuals ¢; = z; — (1 — ggl);} - qglmi_l, t=2,...,N, where ¢?1 is an
estimate of the autoregressive parameter, /i is the sample mean.

3. Obtain B by finding an integer, A, such that B = A% (N —1)> 2000 (minimum number
of resembles required to obtain accurate percentile estimates).

4. Replicate the original N — 1 residuals A4 times for a total of B ressiduals (note that
balance is achieved since each residual occurs A times):

{ez,...,eN),... ,(eg,...,eN)l.
A times

. Permute the B residuals randomly, then e], ..., ep.

. The bootstrap samples «f, b=1,---, B are obatin by

Sy ot

31
(1—¢1)p+ drzi_y +ef, (6)
Azt + (1= A)zf, i1=1,...,B.

3.2 Percentile control limits for single process data

Let G‘(z, B) be the cumulative distribution function of £*, that is,

B
1 .
Gz ,m)(t) = EZI{%— <t}
i=1
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where I is an indicator function. The C;’('rl B)(a) is the 100-ath empirical percentile of the

z; values, that is, the B - ath value in the ordered list of the B replications of z*. We can
write the (1 — ) percentile control limits of z chart as ‘

UCL = G\ (1 - a/2), (7)
LCL = G\ p(a/2), (8)
where the « of the traditional three sigma control limits is 0.9974. If B -a/2 is not an integer,
we use the following procedure; assuming that a/2 < 0.5, let y = [(B + 1)a/2], which is the
largest integer < (B 4 1)a/2, then the empirical /2 and 1 — a/2 quantiles are defined by

yth largest and (B + 1 — y)th largest values of z}, respectively.
Likewise the 1 — « percentile control limits of EWMA chart is given by

UCL = G% 5,(1- @/2), (9)
LCL = G\ p(a/2), : (10)

where the CA?(_ZI B)(a) is the 100-ath empirical percentile of the z} values.

3.3 Percentile control limits for subgroup mean charts

Suppose n sequential observations of the process are taken every n periods, as follows:

L1,T2,... )zTLa fn+1) Tn42,... ;xan """ ) x(k—l)n+1) x(k—l)n+2> ---3 TN,
Subgroup 1 Subgroup 2 Subgroup k

where each z; follows the stationary autoregressive process, as shown in equation (1), and
kn = N. The subsample mean m; is simply defined as a sum or aggregation of n successive
z; subsequently divided by the constant n. The jth subsample mean m; is gven by

1

m. = —
T n

(@G-mn+1 + B-nntat F&in)y =1,k (11)
Then, the bootstrap procedure for assessing control limits from a series of & subgroup
samples of size n, such that N = nk, is described as follows:

1. Estimate the autoregressive parameter, calculate the original residuals and obtain B. (
This step is the same as Step 1, Step 2 and Step 3 in the above bootstrap procedures
for control limits with single process data. )

2. Replicate the original N — 1 residuals An times for a total of Bn residuals (note that
balance is achieved since each residual occurs An times):

&62, oo 2€N )y, (€2, ..., eN),'
An times
3. Permute the Bn residuals randomly, then e}, ..., e%,,.

4. The bootstrap samples 2}, b = 1,---, B are obatin by

= =8y,
o} = (I~ ¢+ rar_, +€f, i=1,...,Bn.
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5. Compute the bootstrap subgroup sample menas m], that is,

1 .
mj = Z(‘”Zj—l)nﬂ + cetzin), i=1,...,B, (13)
%’I,.’B;,...,J};, 3::,+1,;v;+2,...,1:zg, feeeen , xz‘B—l)n-}-l’xZB—l)n+2’""x*Bn‘
Subgroup 1 Subgroup 2 Subgrtmp B

Finally, we can obtain the 1 — a percentile control limits of subgroup samples menan
charts,

UCL = Gi,,.. (1 —/2), (14)
LCL = G, py(e/2), (15)

where the (A}'('nll. B)(a) is the 100-ath empirical percentile of the m; values.

4, Comparison of Control Limits for the Standard methods and Control the
Bootstrap Control Method )

For various AR(1) processes, the control limits estimates for the standard methods and
the bootstrap method are compared. Table 1 shows the mean of 1000 estimated upper and
lower control limits for the z charts and the EWMA charts, and the figures in parentheses
for this table represent the bias, the difference between the estimated mean of the control
limits and the true values. The number of original samples N is 200, the significance level is
99.74% control limits (0.13% for lower and 99.87% for upper ), and the three sigma control
limits are used for the standard methods. The parameter of the EWMA charts are A = 0.1
and 0.3. Table 2 shows the results for the subgroup mean charts, in which the sample size
is n = 5, and the number of subgroups is k = 20.
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Table 1. Comparison of control limits for = control charts and the EWMA charts in the
case of AR(1) processes (the number of original samples N = 200 )

{a) 2 charts

9.87 Percentile 0.13 Percentile
¢ Standard Bootstrap | True Standard Bootstrap | True
25 | 3.09 (0.00) 3.04 (-0.05) | 3.09 [ -3.07 (0.02) -3.03 (0.06) [ -3.09
50 || 3.43 (-0.03) 3.52 (0.06) | 3.46 || -3.44 (0.02) -3.55 (-0.09) | -3.46
75 |l 442 (-0.12) 4.58 ( 0.04) | 4.54 || -4.51 (-0.03) -4.60 (-0.06) | -4.54
95 || 8.36 (-1.25) 8.13 (-1.48) | 9.61 || -8.54 ( 1.06) -8.33 ( 1.27) | -9.61
-25 || 3.10 ( 0.01) 3.08 (-0.01) | 3.09 | -3.10 (-0.01) -3.08 ( 0.01) | -3.09
-50 || 3.47 (-0.01) 3.58 ( 0.12) | 3.46 [ -3.47 (-0.01) -3.58 (-0.12) | -3.46
-75 || 4.51 (-0.03) 4.73 ( 0.19) | 4.54 || -4.51 ( 0.03) -4.72 (-0.18) | -4.54
-95 || 9.28 (-0.33) 9.33 (-0.28) | 9.61 || -9.29 ( 0.32) -9.34 ( 0.27) | -9.61

(b) EWMA charts (A =10.1)

9.87 Percentile 0.13 Percentile
¢ Standard Bootstrap | True Standard Bootstrap | True
25 |1 0.71 (-0.19) 1.00 ( 0.10) | 0.90 [ -0.71 (0.19) -1.00 (-0.10) [ -0.90
50 |1 0.79 (-0.49) 1.32(0.04) | 1.28 || -0.79 ( 0.50) -1.32 (-0.03) | -1.29
75 || 1.01 (-1.35) 2.22 (-0.14) | 2.36 || -1.02 ( 1.34) -2.21 ( 0.15) | -2.36
95 || 1.90 (-6.00) 5.65 (-2.25) | 7.90 || -1.94 (5.96) -5.71 ( 2.19) | -7.90
-25 || 0.71 (0.14) 0.73 (0.16) | 0.57 || -0.71 (-0.14) -0.71 (-0.14) | -0.57
-50 || 0.79 ( 0.30) 0.65(0.16) | 0.49 || -0.80 (-0.31) -0.65 (-0.16) | -0.49
-75 || 1.04 ( 0.58) 0.63 ( 0.17) | 0.46 || -1.03 (-0.57) -0.63 (-0.17) | -0.46
-95 || 2.09 (1.48) 0.73 (0.12) | 0.61 || -2.10 (-1.48) -0.74 (-0.12) | -0.62

(c) EWMA charts (A =10.3)

9.87 Percentile 0.13 Percentile
¢ Standard Bootstrap | True Standard Bootstrap | True
25 |1 ' 1.30 (-0.25) 1.62 (0.07) | 1.55 [ -1.29.(0.27) -1.62 (-0.06) | -1.56
50 || 1.45 (-0.67) 2.16 (0.04) | 2.12 || -1.44 (0.67) -2.15 (-0.04) | -2.11
75 || 1.87 (-1.53) 3.39 (-0.01) | 3.40 || -1.86 ( 1.55) -3.35 (-0.44) | -3.41
95 || 3.63 (-5.41) 7.31 (-1.73) | 9.04 || -3.41 ( 5.64) -7.05 ( 2.00) | -9.05
-25 4 1.30 ( 0.21) 1.15( 0.06) | 1.09 || -1.30 (-0.21) -1.15 (-0.06) | -1.09
-50 |f 1.46 (0.45) 1.06 ( 0.05) | 1.01 || -1.45 (-0.36) -1.06 ( 0.03) | -1.01
-75 | 1.88 ( 0.81) 1.11 ( 0.04) | 1.07 || -1.88 (-0.81) -1.11 (-0.04) | -1.07
-95 || 3.88 (2.07) 1.78(-0.03) | 1.81 || -3.88 (-2.06) -1.78 ( 0.04) | -1.82

Table 2. Comparison of control limits for subsample mean control charts with
(n =5,k = 20) in the case of AR(1) processes

99.87 Percentile 0.13 Percentile
¢ Standard Bootstrap | True Standard Bootstrap | True
25 || 1.37 (-0.03) 1.69 (0.29) | 1.40 || -1.38 (0.02) -1.71 (:0.31) | -1.40
50 || 1.52 (-0.39) 2.30 (0.39) | 1.91 || -1.52 (0.39) -2.30 (-0.39) | -1.91
75 11 1.95 ( 0.55) 3 59 (0.52) | 3.07 | -1.93 (1.15) -3.55 (-0.47) | -3.08
95 || 3.34 (-4.31) 6.71 (-0.94) | 7.65 || -3.29 (4.33) -6.70 ( 0.92) | -7.62
-25 || 1.39 ( 0.46) 1 18 (0.25) | 0.93 || -1.38 (-0.38) -1.17 (-0.24) | -0.93
-50 || 1.55 (0.71) 1.05 (0.21) | 0.84 || -1.54 (-0.70) -1.04 (-0.20) | -0.84
75 |l 2.01 (1.15) 1.08 (0.22) | 0.86 || -2.01 (-1.15) -1.08 (-0.22) | -0.86
-.95 || 3.96 (1.07) 1.80(-1.09) | 1.61 || -3.97 (-2.36) -1.81 (-0.20) | -1.61
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