• Title/Summary/Keyword: Boost 컨버터

Search Result 743, Processing Time 0.026 seconds

Influence of the Parasitic Inductor Resistance on Controller Design of Boost Converter for Renewable Energy System including an Energy Storage (에너지 저장장치를 포함하는 신재생에너지원용 부스트 컨버터의 인덕터 기생저항에 따른 제어기 설계 영향 분석)

  • Park, Sun-Jae;Park, Joung-Hu;Jeon, Hee-Jong
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.5
    • /
    • pp.511-520
    • /
    • 2011
  • Nowadays, industry of smart grid is important for practical use of the renewable energy. In this situation, it is important to use the energy storage to make more stable and efficient renewable energy sources. The power conditioning systems consist in a boost converter which makes renewable energy source connected with the grid-connected inverter and the charger/discharger which takes the energy transfer between the boost converter and an energy storage. The effects on the controller design of each converter must be investigated to avoid the instability of the entire system. small-signal modelling of the boost converter and charger/discharger have been done and a controller design example is also presented. In this paper, effects on the controller design of the boost converter and the charger/discharger are investigated according to the existence of the parasitic resistance of the boost converter. In conclusion, the parasitic resistance of the inductor should be considered from the aspect of both the frequency domain analysis and time domain simulation using both MATLAB and PSIM.

A Study on Excitation System for Synchronous Generator Using Two State Three Phase PWM AC/DC Converter (2단 3상 PWM AC/DC 컨버터를 이용한 동기발전기 여자제어시스템)

  • Lee, Sang-Hun;Lee, Dong-Hee;Ahn, Jin-Woo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.3
    • /
    • pp.96-106
    • /
    • 2007
  • The terminal voltage of a synchronous generator is maintained by the field current control of excitation system. Generally AC/DC converter which is component of AVR(Automatic Voltage Regulator) system for excitation current control is connected to diode rectifier and DC/DC converter system. In the case of diode rectifier system of phase controlled converter as AC/DC converter have low power factor and harmonics of lower order in the line current. In this paper, two stage three phase PWM AC/DC converter is studied to solve these problems. The characteristics of a proposed converter reduces the harmonics and reactive power of the distribution line and has fast dynamic response in transient period using boost converter and current control mode buck converts. The proposed method is verified by the computer simulation and experimental results in prototype generation system.

A Study on the Impelementation of High Efficient Boost Converter using Resonant switch (공진 스위치를 이용한 고효율 Boost 컨버터 구현에 관한 연구)

  • 임승하;최태섭;사공석진
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.11 no.1
    • /
    • pp.48-56
    • /
    • 1997
  • 본 논문은 상용전원 110[V] 주파수 60[Hz] 전원을 110[V] 주파수 60[kHz]로 전력변환시 스위칭에 발생하는 전력 손실을 감소시키기 위해 스너버 회로 및 전압공진 스위치를 이용한 boost 컨버터는 스위치로 스위칭을 하여 고주파 스위치에도 스위치 손실을 줄일 수 있다. 그러므로, 전력변환 과정에서 발생하는 스위칭 손실을 대폭 감소시킬 수 있었으며 결과적으로 전력변환 효율을 높였다.

  • PDF

Photovoltaic Generation by Parallel Driving of Modified Buck-boost Converter (변형된 승강압 컨버터의 병렬구동에 의한 태양광발전)

  • Lee Hee-Chang;Park Sung-Jun;Park Soo-Sik;Moon Chae-Joo;Lee Man-Hyung;Kim Jong-Dal
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.9 no.5
    • /
    • pp.457-466
    • /
    • 2004
  • In this paper, a modified converter is presented and analyzed to use as a photovoltaic converter. And also a new parallel driving scheme is proposed to increase output power and to reduce the output voltage ripple. The ratio of the output to the input voltage of the modified converter is equal to that of the boost converter. The difference between both converters is the composition of output terminal. Owing to the discrepancy, a working voltage of the output capacitor of the modified converter becomes lower, thus the capacitance value of the capacitor can be smaller than that of the boost converter. The proposed parallel driving is based on the modified converter and a current-mode-control method. It gives a good solution for alleviating the current sharing unbalance problem of conventional parallel operations. It reduces the output voltage ripple by means of increasing the equivalent switching frequency without additional switching losses. The validity of the proposed parallel driving strategy is verified through computer-aided simulations and experimental results.

A New Power Factor Correction Circuit Using Boost Converter (부스트 컨버터를 이용한 새로운 역율 개선회로)

  • 김만고
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.21 no.2
    • /
    • pp.178-185
    • /
    • 1997
  • According to the wide - spread use of rectifier in electronic equipments, such problems as electronic components failures or equipment disorders have been occurred due to current harmonics. To overcome these problems, power factor correction circuits employing boost converter have been used. The high switching stress of boost converter can be reduced by snubber circuit. Recently, research activities in snubber circuits have been directed to energy recovery snubber for improving the efficiency of power converter. In this study, a new passive snubber circuit which can recover trapped snubber energy without added control is proposed for boost converter. The control of boost converter with proposed snubber is the same as the conventional one. In addition, the energy recovery circuit can be implemented with a few passive components. The circuit operation is confirmed through simulation.

  • PDF

A novel energy-efficient bridgeless boost AC to DC converter (효율을 고려한 새로운 AC/DC 컨버터)

  • Yoon, Kyoung-Kuk;Kim, Seong-Hwan;Kim, Deok-Ki
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.3
    • /
    • pp.223-227
    • /
    • 2016
  • Power supplies make the load compatible with its power source. DC power supplies are extensively used with most electrical and electronic appliances such as computers, television, and audio sets. The presence of non-linear loads results in a low power factor and higher harmonics in the power system. Several techniques for power-factor correction and harmonic reduction have been reported in the literature. This paper proposes a bridgeless boost converter that improves the power factor and reduces the harmonic content in input line currents as compared to full-bridge rectifiers. This bridgeless boost converter eliminates the need of a line-voltage bridge rectifier in conventional boost converter and thereby reduces conduction losses. The effectiveness of the proposed scheme is verified by computer simulations by using the PSIM software.

Critical Conduction Mode BOOST Type Solar Array Regulator (임계모드 부스트형 태양전력 조절기)

  • Yang, JeongHwan;Ryu, SangBurm;Yun, SeokTeak
    • Journal of Satellite, Information and Communications
    • /
    • v.9 no.3
    • /
    • pp.86-90
    • /
    • 2014
  • A DC-DC Converter operates in CCM(Continuous Coundcution Mode), DCM(Discontinuous Conduction Mode), CRM(Critical Conduction Mode). The CRM is boundary between CCM and DCM. If a DC-DC converter is designed to operate in CRM, its inductor volume can decrease and power loss which caused by switch and diode can decrease. In this paper, the DC-DC converter which operates in CRM is applied to a solar array regulator(SAR) for the satellite. The switching frequency of the CRM boost SAR changes according to input and output condition. The switching frequency limit logic is applied to limit the maximum switching frequency. Meanwhile, the small signal transfer function of the CRM boost SAR is simple, so the controller design is also simple. In this paper, the small signal transfer function from control reference to solar array voltage is induced. And the voltage controller is designed based on the small signal transfer function. Finally, the CRM boost SAR is verified by simulation.

A Novel ZCS PWM Boost Converter with operating Dual Mode (Dual 모드로 동작하는 새로운 ZCS PWM Boost 컨버터)

  • 김태우;김학성
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.7 no.4
    • /
    • pp.346-352
    • /
    • 2002
  • A novel Zero Current Switching(ZCS) Pulse Width Modulation(PWM) boost converter with dual mode for reducing two rectifiers reverse recovery related losses is proposed. The switches of the proposed converter are operating to work alternatively turn-on and turn-off with soft switching condition In the every cycle and the proposed converter reduces the reverse recovery current, which is related switching losses and EMI problems, of the free-wheeling diode$(D_1, D_2)$ by adding the resonant inductor Lr, in series with the switch $S_1$. The switching components$(S_1, S_2, D, D_1)$ in the proposed boost converter are subjected to minimum voltage and current stresses same as those in their PWM counterparts because there are no additional active switches and resonant elements compared with the conventional ZVT PWM $converters^{[2]}$. The operation of the proposed converter, in this paper, is analyzed and to verify the feasibility of the characteristics is built and tested.

A Design of Current-mode Buck-Boost Converter using Multiple Switch with ESD Protection Devices (ESD 보호 소자를 탑재한 다중 스위치 전류모드 Buck-Boost Converter)

  • Kim, Kyung-Hwan;Lee, Byung-Suk;Kim, Dong-Su;Park, Won-Suk;Jung, Jun-Mo
    • Journal of IKEEE
    • /
    • v.15 no.4
    • /
    • pp.330-338
    • /
    • 2011
  • In this paper, a current-mode buck-boost converter using Multiple switching devices is presented. The efficiency of the proposed converter is higher than that of conventional buck-boost converter. In order to improve the power efficiency at the high current level, the proposed converter is controlled with PWM(pulse width modulation) method. The converter has maximum output current 300mA, input voltage 3.3V, output voltage from 700mV to 12V, 1.5MHz oscillation frequency, and maximum efficiency 90%. Moreover, this paper proposes watchdog circuits in order to ensure the reliability and to improve the performance of dc-dc converters. An electrostatic discharge(ESD) protection circuit for deep submicron CMOS technology is presented. The proposed circuit has low triggering voltage using gate-substrate biasing techniques. Simulated result shows that the proposed ESD protection circuit has lower triggering voltage(4.1V) than that of conventional ggNMOS(8.2V).