• Title/Summary/Keyword: Bone plates

Search Result 166, Processing Time 0.03 seconds

Finite element analysis on bio-mechanical behavior of composite bone plate for healing femur fracture considering contact conditions (접촉조건을 고려한 대퇴골 치료용 복합재료 고정판의 생체 역학적 거동에 관한 유한요소해석)

  • Kim, Suk-Hun;Chang, Seung-Hwan
    • Composites Research
    • /
    • v.23 no.1
    • /
    • pp.1-7
    • /
    • 2010
  • In this paper, finite element analyses for estimating the behavior of fractured femur just after the operation were carried out by using ABAQUS 6.71. A stainless steel bone plate and composite bone plates with various stacking angles were considered to find out the effect of bone plate properties on bone fracture healing. In order to simulate the actual state, contact conditions between the plate and bone and fractured bones were imposed on the finite element models and the whole analysis was divided by two steps; screw fastening step and load bearing step. The stress and strain distributions at the fracture site for the cases of the stainless steel and composite bone plates were analyzed and compared with. From the analyses it was found that the composite bone plate had potential advantages for effective bone fractures healing relieving stress shielding effect.

Effects of Calcium, Vitamin D and Egg Yolk Peptide Treatment on the Retardation of Longitudinal Bone Growth Induced by Low-Calcium Diets (저칼슘 식이로 유발한 성장 저하 흰쥐에 대한 칼슘, 비타민 D 및 난황 펩타이드의 투여가 장골 길이 성장에 미치는 영향)

  • Kim, Myung-Gyou;Kim, Hye Kyung;Leem, Kang-Hyun
    • The Korea Journal of Herbology
    • /
    • v.29 no.5
    • /
    • pp.31-38
    • /
    • 2014
  • Objectives : Egg yolk is composed of various important chemical substances for human health. A calcium shortage causes the growth retardation on the body growth. In this study, we examined the therapeutic effects of calcium, vitamin D and egg yolk peptide (EYP) treatment on the retardation of the longitudinal bone growth induced by low-calcium diet in adolescent rats. Methods : Low calcium diets were administrated for 15 days. During the last five days, calcium and/or vitamin D and/or EYP were administrated. The body weights, longitudinal bone growth rates, the heights of growth plates, and bone morphogenetic protein (BMP)-2 and insulin-like growth factor (IGF)-1 expressions were measured using histochemical analysis. Results : Low calcium diets caused the significant reduction in body weight gains and the longitudinal bone growth. The heights of growth plates and the expressions of BMP-2 and IGF-1 showed the impairment of body growth as well. Calcium and/or vitamin D administration could not significantly increase the longitudinal bone growth. However, calcium, vitamin D, and EYP administration significantly increased the bone growth, the growth plate height, and BMP-2 and IGF-1 expressions. Conclusions : These results suggest that EYP enhances the longitudinal bone growth in the calcium and/or vitamin D deficiency and it could be a promising agent for the treatment of children suffering from malnutrition.

Maxillary protraction using customized mini-plates for anchorage in an adolescent girl with skeletal Class III malocclusion

  • Liang, Shuran;Xie, Xianju;Wang, Fan;Chang, Qiao;Wang, Hongmei;Bai, Yuxing
    • The korean journal of orthodontics
    • /
    • v.50 no.5
    • /
    • pp.346-355
    • /
    • 2020
  • The treatment of skeletal Class III malocclusion in adolescents is challenging. Maxillary protraction, particularly that using bone anchorage, has been proven to be an effective method for the stimulation of maxillary growth. However, the conventional procedure, which involves the surgical implantation of mini-plates, is traumatic and associated with a high risk. Three-dimensional (3D) digital technology offers the possibility of individualized treatment. Customized mini-plates can be designed according to the shape of the maxillary surface and the positions of the roots on cone-beam computed tomography scans; this reduces both the surgical risk and patient trauma. Here we report a case involving a 12-year-old adolescent girl with skeletal Class III malocclusion and midface deficiency that was treated in two phases. In phase 1, rapid maxillary expansion and protraction were performed using 3D-printed mini-plates for anchorage. The mini-plates exhibited better adaptation to the bone contour, and titanium screw implantation was safer because of the customized design. The orthopedic force applied to each mini-plate was approximately 400-500 g, and the plates remained stable during the maxillary protraction process, which exhibited efficacious orthopedic effects and significantly improved the facial profile and esthetics. In phase 2, fixed appliances were used for alignment and leveling of the maxillary and mandibular dentitions. The complete two-phase treatment lasted for 24 months. After 48 months of retention, the treatment outcomes remained stable.

Labial and lingual/palatal bone thickness of maxillary and mandibular anteriors in human cadavers in Koreans

  • Han, Ji-Young;Jung, Gyu-Un
    • Journal of Periodontal and Implant Science
    • /
    • v.41 no.2
    • /
    • pp.60-66
    • /
    • 2011
  • Purpose: The aim of this study is to evaluate the buccal and lingual bone thickness in the anterior teeth and the relationship between bone thickness and the tissue biotype. Methods: Three male and two female human cadaver heads (mean age, 55.4 years) were used in this study. First, the biotype of periodontium was evaluated and categorized into a thick or a thin group. Next, full thickness reflections of the mandible and the maxilla to expose the underlying bone for accurate measurements in the anterior regions were performed. After the removal of the half of the alveolar bone, the probe with a stopper was used to measure the thickness of bone plate at the alveolar crest (AC), 3 mm apical to the alveolar crest (AC-3), 6 mm apical to the alveolar crest (AC-6), and 9 mm apical to the alveolar crest (AC-9). The thickness of the buccal plates at the alveolar crest were $0.97{\pm}0.18\;mm$,$0.78{\pm}0.21\;mm$, and $0.95{\pm}0.35\;mm$ in the maxillary central incisors, lateral incisors, and canines, respectively. The thickness of the labial plates at the alveolar crest were $0.86{\pm}0.59\;mm$, $0.88{\pm}0.70\;mm$, and $1.17{\pm}0.70\;mm$ in the mandibular central incisors, lateral incisors and canines, respectively. Conclusions: The thickness of the labial plate in the maxillary anteriors is very thin that great caution is needed for placing an implant. The present study showed the bone thickness of maxillary and mandibular anteriors at different positions. Therefore, these data can be useful for the understanding of the bone thickness of the anteriors and a successful implant placement.

Reproducibility of cone-beam computed tomographic measurements of bone plates and the interdental septum in the anterior mandible

  • Valerio, Claudia Scigliano;Alves, Claudia Assuncao e;Manzi, Flavio Ricardo
    • Imaging Science in Dentistry
    • /
    • v.49 no.1
    • /
    • pp.9-17
    • /
    • 2019
  • Purpose: This study aimed to introduce a novel method to evaluate the alveolar bone and interdental septum in the anterior mandible using cone-beam computed tomography (CBCT). Materials and Methods: Fifty-six CBCT scans from adult patients were selected. The CBCT scans were obtained before and after orthodontic treatment. The following measurements were taken: width of the alveolar bone and the interdental septum, height of the interdental septum, height of the bone plates, distance between the cementoenamel junction and marginal bone crests, and vertical positioning of the mandibular incisor, using the lingual plane as a reference. To test the reproducibility and the stability of the lingual plane, a triangle was traced in the anterior mandible. The intra-class correlation coefficient(ICC) was used to determine intra- and inter-examiner agreement. The paired Student t-test was used to evaluate the area of the triangle and the reproducibility of all measurements. Results: The ICC was excellent for the alveolar bone and dental measurements (0.9989 and 0.9977, respectively), as well as for the interdental septum (0.9987 and 0.9961, respectively). The area of the triangles showed stability in the lingual plane (P>0.05). For the alveolar bone, mandibular incisor, and interdental septum measurements, no statistically significant differences were found between the 2 examiners(P>0.05), confirming the technical reliability of the measurements. Conclusion: The method used in this study provides a valid and reproducible assessment of alveolar bone dimensions in the anterior mandible measured on CBCT images.

Osteotomy and iliac bone graft for the treatment of malunion caused by failed mandibular fracture reduction

  • Hwang, Kun;Ma, Sung Hwan
    • Archives of Craniofacial Surgery
    • /
    • v.21 no.6
    • /
    • pp.384-386
    • /
    • 2020
  • This report describes osteotomy and iliac bone graft for malunion caused by failed mandibular fracture reduction. A 27-year-old man was referred 3 months after a motor vehicle accident. At another hospital, two operations had been performed for symphyseal fracture using two resorbable plates. Malocclusion was noted, and panoramic radiography and computed tomography revealed a misaligned dental arch, with a 9.37-mm gap between the central and the lateral incisor of the left mandible. A wafer was made from the patient's dental model, and a maxillary arch bar was applied. Through a lower gingivolabial incision, osteotomy was performed between the malunited symphyseal fracture segments. Both segments were reduced to their original position using the wafer and fixed with titanium miniplates via intermaxillary fixation (IMF). The intersegmental gap was filled with cancellous bone from the iliac crest. The gingival defect was covered with a mucosal transposition flap from the gingivolabial sulcus. IMF and the wafer were maintained for 5 and 9 weeks, respectively. At postoperative week 13, the screws were removed from the mandible and satisfactory occlusion was noted. His mouth opening improved from 2.5 to 3 finger breadths (40 mm). This case demonstrates the need for sufficient IMF when using resorbable plates.

The use of precontoured plates for midshaft clavicle fractures is not always the best course of treatment

  • Manmohan Patel;Mohtashim Ahmad;Natwar Agrawal;Sumit Tulshidas Patil;John Ashutosh Santoshi;Bertha Rathinam;Kusum Rajendra Gandhi
    • Anatomy and Cell Biology
    • /
    • v.56 no.4
    • /
    • pp.456-462
    • /
    • 2023
  • Plate fixation has become the preferred approach for treating displaced midshaft clavicle fractures. However, plate fixation of the clavicle presents several unique challenges, including its complex bony architecture and its immediate subcutaneous location. In many cases, we have observed that precontoured implants do not conform to the clavicular anatomy, and many patients complain of postoperative implant-related discomfort. A total of 111 clavicles, both left and right sides, were examined to match two commonly used designs of anatomical pre-contoured superior anterior clavicle plates, with and without lateral extension. The anteroposterior (AP) plane congruence of the plate to the underlying bone, the vertical gap between the bone and plate, and the length of the plate that was off the bone either anteriorly and/or posteriorly at both ends of the clavicle were measured. The scoring system was used to determine the fit of the implant on the clavicle as anatomic, good, or poor. We found that the maximum superior bow of the clavicle was lateral to the midline by 30.75 mm and 30.5 mm on the right and left sides, respectively. The magnitude of the bow was 4.28 mm and 4.46 mm on the right and left sides, respectively. We also found that the plate was a poor fit in 75.86% of cases on the left side and 73.5% of cases on the right side. Manipulating the plates during surgery was very difficult in the AP plane.

Sphenoid bone changes in rapid maxillary expansion assessed with cone-beam computed tomography

  • Stepanko, Lucas S.;Lagravere, Manuel O.
    • The korean journal of orthodontics
    • /
    • v.46 no.5
    • /
    • pp.269-279
    • /
    • 2016
  • Objective: Rapid maxillary expansion (RME) is used to expand the maxilla and increase arch perimeter; yet, there are few reports on its effects on the sphenoid bone. With cone-beam computed topography (CBCT), it is possible to visualize sphenoid bone changes. The purpose of this study was to investigate sphenoid bone changes observed in conjunction with RME treatments, using CBCT. Methods: Sixty patients (34 women and 26 men, aged 11-17 years) underwent RME as part of their orthodontic treatment. Patients were randomly assigned to one of three groups: a tooth-anchored group, a bone-anchored group, or a control group. Initial CBCT scans were performed preceding the RME treatment ($T_1$) and again directly after the completion of expansion ($T_2$). Statistical analysis included ANOVA, descriptive statistics, and the intraclass correlation coefficient (ICC). Results: The reliability of the landmark location was at least 0.783, and the largest ICC mean measurement error was 2.32 mm. With regard to distances, the largest change was 0.78 mm, which was not statistically significant (p > 0.05). Statistical significance was established in patient groups of the same sex and treatment type for the following distance measurements: right anterior lateral pterygoid plate to the right edge of the hypophyseal fossa ($d_2$), anterior distance between the medial pterygoid plates ($d_4$), and anterior distance between the left medial and lateral plates ($d_8$). Conclusions: In this study, there were no clinically significant changes in the sphenoid bone due to RME treatments regardless of sex or treatment type.

Fatigue Characterization of Glass/Polypropylene Composite Bone Plates Locked with an Artificial Tibia under Moisture Environment (인조골에 체결된 유리섬유/폴리프로필렌 복합재료 고정판의 수분 환경 피로 특성)

  • Han, Min-Gu;Chang, Seung-Hwan
    • Composites Research
    • /
    • v.26 no.5
    • /
    • pp.328-333
    • /
    • 2013
  • In this study, bone plate made of glass/polypropylene composite material which was applied to an artificial bone was tested to check the service ability under fatigue loading. To check serviceability of composite bone plates fatigue test was carried out considering changes in the moisture absorption rate, locking position of screws and loading condition. Test results showed that all the tested specimens had the fatigue life more than one million cycles which was much higher fatigue life than the expected value of 650,000 cycles. Screw position was not critical impact on the deformation of the fracture site. In this paper, the mechanical performance of the glass/polypropylene composite was verified by fatigue test under various water absorption conditions, and this result may give useful information on the design of composite bone plate.

A Basic Design and Characterization on Composite Bone Plate for Bone Fracture Healing (골절 치료를 위한 복합재료 고정판 기초 설계 및 특성 평가)

  • Kim, Ju-Ho;Chang, Seung-Hwan
    • Composites Research
    • /
    • v.20 no.5
    • /
    • pp.7-12
    • /
    • 2007
  • This paper aims to enhance the efficiency of bone fracture healing with bone plate made of fiber reinforced composite materials. The composite bone plate was designed as the same dimension and shape as the existing stainless steel bone plate. To find out the appropriate stacking sequence of the composite bone plate the variations of strain distributions were calculated using FE analysis when the bone plates were applied to the fracture site. From the analysis result it was found that the composite bone plate whose Young's modulus is lower than that of metal bone plate gave more uniform strain distribution and provided appropriate condition for callus formation and its development.