• 제목/요약/키워드: Bone morphogenetic protein receptor

검색결과 39건 처리시간 0.023초

Anti-wrinkle effect of bone morphogenetic protein receptor 1a-extracellular domain (BMPR1a-ECD)

  • Yoon, Byung-Hak;Jeon, Yun-Hui;Hwang, Byunghee;Kwon, Hyuknam;Choe, Senyon;Yang, Zungyoon
    • BMB Reports
    • /
    • 제46권9호
    • /
    • pp.465-470
    • /
    • 2013
  • Bone morphogenetic proteins (BMPs) have diverse and important roles in the proliferation and differentiation of adult stem cells in our tissues. Especially, BMPs are well known to be the main inducers of bone formation, by facilitating both proliferation and differentiation of bone stem cells. Interestingly, in skin stem cells, BMPs repress their proliferation but are indispensable for the proper differentiation into several lineages of skin cells. Here, we tested whether BMP antagonists have an effect on the prevention of wrinkle formation. For this study we used an in vivo wrinkle-induced mouse model. As a positive control, retinoic acid, one of the top anti-wrinkle effectors, showed a 44% improvement compared to the non-treated control. Surprisingly, bone morphogenetic protein receptor 1a extracellular domain (BMPR1a-ECD) exhibited an anti-wrinkle effect which was 6-fold greater than that of retinoic acid. Our results indicate that BMP antagonists will be good targets for skin or hair diseases.

Bone Healing in Ovariectomized-rabbit Calvarial Defect with Tricalcium Phosphate Coated with Recombinant Human Bone Morphogenetic Protein-2 Genetically Engineered in Escherichia coli

  • Kim, Jung-Han;Kim, Chang-Joo;Shin, Sang-Hun
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제36권2호
    • /
    • pp.37-49
    • /
    • 2014
  • Purpose: This study compares the bone formation ability of tricalcium phosphate (TCP) with and without recombinant human bone morphogenetic protein-2 (rhBMP-2) and assesses TCP as a carrier of rhBMP-2. Methods: Bilateral round defects (diameter: 8.0 mm) were formed in the cranium of eight New Zealand white rabbits. The defects were grafted with TCP only (control group) or with rhBMP-2-coated TCP (experimental group). The animals were sacrificed at 1st week, 2nd week, 4th week, and 8th week postoperatively; two rabbits sacrificed each time. The skulls were harvested and subjected to radiographic and histological examination. Results: Radiologic evaluation showed faster bone remodeling in the experimental group than in the control group. Histologic evaluation (H&E, Masson's trichrome stain) showed rapid bone formation, remodeling and calcification in the 1st and 2nd week in the experimental group. Immunohistochemical evaluation showed higher expression rate of osteoprotegerin, receptor activator of nuclear factor ${\kappa}B$ ligand, and receptor activator of nuclear factor ${\kappa}B$ in the experimental group at the 1st and 2nd week than in the control group. Conclusion: rhBMP-2 coated TCP resulted in rapid bone formation, remodeling, and calcification due to rhBMP-2's osteogenic effect. TCP performed properly as a carrier for rhBMP-2. Thus, the use of an rhBMP-2 coating on TCP had a synergic effect on bone healing and, especially, bone remodeling and maturation.

Expression of Recombinant Human Bone morphogenetic protein 2 (hBMP2) in Insect cells

  • Kim, Seong-Wan;Kim, Seong-Ryul;Park, Seung Won;Goo, Tae-Won;Choi, Kwang-Ho
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • 제34권1호
    • /
    • pp.1-5
    • /
    • 2017
  • Bone morphogenetic protein 2 (BMP2) plays an important role in the development of bone and cartilage. It is involved in the hedgehog pathway, TGF beta signaling pathway, and in cytokine-cytokine receptor interaction. It is involved also in cardiac cell differentiation and epithelial to mesenchymal transition. In this study, We expressed human BMP2 (hBMP2) recombinant protein using Baculovirus Expression Vector System (BEVS) in Sf9 insect cells. The hBMP2 cDNA was cloned into baculovirus transfer vector, pBacgus-4x-1 and recombinant baculovirus was screened out through X-gal and GUS-fusions assay. Western blot analysis shown that molecular weight of hBMP2 recombinant protein was about 44.71 kDa.

Ginseng saponins and the treatment of osteoporosis: mini literature review

  • Siddiqi, Muhammad Hanif;Siddiqi, Muhammad Zubair;Ahn, Sungeun;Kang, Sera;Kim, Yeon-Ju;Sathishkumar, Natarajan;Yang, Dong-Uk;Yang, Deok-Chun
    • Journal of Ginseng Research
    • /
    • 제37권3호
    • /
    • pp.261-268
    • /
    • 2013
  • The ginseng plant (Panax ginseng Meyer) has a large number of active ingredients including steroidal saponins with a dammarane skeleton as well as protopanaxadiol and protopanaxatriol, commonly known as ginsenosides, which have antioxidant, anticancer, antidiabetic, anti-adipocyte, and sexual enhancing effects. Though several discoveries have demonstrated that ginseng saponins (ginsenosides) as the most important therapeutic agent for the treatment of osteoporosis, yet the molecular mechanism of its active metabolites is unknown. In this review, we summarize the evidence supporting the therapeutic properties of ginsenosides both in vivo and in vitro, with an emphasis on the different molecular agents comprising receptor activator of nuclear factor kappa-B ligand, receptor activator of nuclear factor kappa-B, and matrix metallopeptidase-9, as well as the bone morphogenetic protein-2 and Smad signaling pathways.

Effects of Daidzein on mRNA Expression of Bone Morphogenetic Protein Receptor Type I and II Genes in the Ovine Granulosa Cells

  • Chen, A Qin;Xu, Zi Rong;Yu, Song Dong;Yang, Zhi Gang
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제23권3호
    • /
    • pp.326-332
    • /
    • 2010
  • Daidzein, a natural isoflavonoid phytoestrogen, structurally resembles estradiol (E2) and possesses estrogenic activity. This study was designed to test the hypothesis that daidzein may mimic the effects of E2 on ovine follicle development by regulation of the mRNA expression of bone morphogenetic protein receptor genes and thereby influence the reproductive system. Granulosa cells were cultured in serum-free McCoy's 5A medium with and without supplementation of daidzein. Results showed that daidzein (10-100 ng/ml) significantly increased the proliferation of ovine granulosa cells (p<0.05), but inhibited the growth of granulosa cells at a dose of 1,000 ng/ml (p<0.01). Daidzein inhibited progesterone production in a dose dependent manner; however, it did not affect estradiol production by granulosa cells. We also investigated the effects of daidzein on BMPRII, BMPRIB and ALK-5 mRNA expression in ovine granulosa cells by quantitative real-time PCR. Treatment of granulosa cells with daidzein increased significantly expression of these genes at 10-100 ng/ml. Thus, these data suggested that a low concentration of daidzein (10-100 ng/ml) had a direct stimulatory effect on ovine granulosa cells while a high concentration was toxic.

Combined effect of bisphosphonate and recombinant human bone morphogenetic protein 2 on bone healing of rat calvarial defects

  • Kim, Ho-Chul;Song, Jae-Min;Kim, Chang-Joo;Yoon, Sang-Yong;Kim, In-Ryoung;Park, Bong-Soo;Shin, Sang-Hun
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제37권
    • /
    • pp.16.1-16.7
    • /
    • 2015
  • Background: This study aimed to investigate new bone formation using recombinant human bone morphogenetic protein 2 (rhBMP-2) and locally applied bisphosphonate in rat calvarial defects. Methods: Thirty-six rats were studied. Two circular 5 mm diameter bony defect were formed in the calvaria using a trephine bur. The bony defect were grafted with $Bio-Oss^{(R)}$ only (group 1, n = 9), $Bio-Oss^{(R)}$ wetted with rhBMP-2 (group 2, n = 9), $Bio-Oss^{(R)}$ wetted with rhBMP-2 and 1 mM alendronate (group 3, n = 9) and $Bio-Oss^{(R)}$ wetted with rhBMP-2 and 10 mM alendronate (group 4, n = 9). In each group, three animals were euthanized at 2, 4 and 8 weeks after surgery, respectively. The specimens were then analyzed by histology, histomorphometry and immunohistochemistry analysis. Results: There were significant decrease of bone formation area (p < 0.05) between group 4 and group 2, 3. Group 3 showed increase of new bone formation compared to group 2. In immunohistochemistry, collagen type I and osteoprotegerin (OPG) didn't show any difference. However, receptor activator of nuclear factor ${\kappa}B$ ligand (RANKL) decreased with time dependent except group 4. Conclusion: Low concentration bisphosphonate and rhBMP-2 have synergic effect on bone regeneration and this is result from the decreased activity of RANKL of osteoblast.

Effect of recombinant human bone morphogenetic protein-2 on bisphosphonate-treated osteoblasts

  • Kwon, Taek-Kyun;Song, Jae-Min;Kim, In-Ryoung;Park, Bong-Soo;Kim, Chul-Hoon;Cheong, In-Kyo;Shin, Sang-Hun
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제40권6호
    • /
    • pp.291-296
    • /
    • 2014
  • Objectives: Bisphosphonate-related osteonecrosis of the jaw (BRONJ) is a side effect of bisphophonate therapy that has been reported in recent years. Osteoclastic inactivity by bisphosphonate is the known cause of BRONJ. Bone morphogenetic protein-2 (BMP-2) plays an important role in the development of bone. Recombinant human BMP-2 (rhBMP-2) is potentially useful as an activation factor for bone repair. We hypothesized that rhBMP-2 would enhance the osteoclast-osteoblast interaction related to bone remodeling. Materials and Methods: Human fetal osteoblast cells (hFOB 1.19) were treated with $100{\mu}M$ alendronate, and 100 ng/mL rhBMP-2 was added. Cells were incubated for a further 48 hours, and cell viability was measured using an MTT assay. Expression of the three cytokines from osteoblasts, receptor activator of nuclear factor-${\kappa}B$ ligand (RANKL), osteoprotegerin (OPG), and macrophage colony-stimulating factor (M-CSF), were analyzed by real-time polymerase chain reaction and enzyme-linked immunosorbent assay. Results: Cell viability was decreased to $82.75%{\pm}1.00%$ by alendronate and then increased to $110.43%{\pm}1.35%$ after treatment with rhBMP-2 (P<0.05, respectively). OPG, RANKL, and M-CSF expression were all decreased by alendronate treatment. RANKL and M-CSF expression were increased, but OPG was not significantly affected by rhBMP-2. Conclusion: rhBMP2 does not affect OPG gene expression in hFOB, but it may increase RANKL and M-CSF gene expression.

Combined effect of recombinant human bone morphogenetic protein-2 and low level laser irradiation on bisphosphonate-treated osteoblasts

  • Jeong, Seok-Young;Hong, Ji-Un;Song, Jae Min;Kim, In Ryoung;Park, Bong Soo;Kim, Chul Hoon;Shin, Sang Hun
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제44권6호
    • /
    • pp.259-268
    • /
    • 2018
  • Objectives: The purpose of this study was to evaluate the synergic effect of recombinant human bone morphogenetic protein-2 (rhBMP-2) and low-level laser therapy (LLLT) on bisphosphonate-treated osteoblasts. Materials and Methods: Human fetal osteoblast cells (hFOB 1.19) were cultured with $100{\mu}M$ alendronate. Low-level Ga-Al-As laser alone or with 100 ng/mL rhBMP-2 was then applied. Cell viability was measured with MTT assay. The expression levels of receptor activator of nuclear factor kappa-B ligand (RANKL), macrophage colony-stimulating factor (M-CSF), and osteoprotegerin (OPG) were analyzed for osteoblastic activity inducing osteoclastic activity. Collagen type and transforming growth factor beta-1 were also evaluated for bone matrix formation. Results: The results showed that rhBMP-2 and LLLT had a synergic effect on alendronate-treated osteoblasts for enhancing osteoblastic activity and bone matrix formation. Between rhBMP-2 and LLLT, rhBMP-2 exhibited a greater effect, but did not show a significant difference. Conclusion: rhBMP-2 and LLLT have synergic effects on bisphosphonate-treated osteoblasts through enhancement of osteoblastic activity and bone formation activity.

Low-Intensity Pulsed Ultrasound Promotes BMP9 Induced Osteoblastic Differentiation in Rat Dedifferentiated Fat Cells

  • Fumiaki Setoguchi;Kotaro Sena;Kazuyuki Noguchi
    • International Journal of Stem Cells
    • /
    • 제16권4호
    • /
    • pp.406-414
    • /
    • 2023
  • Dedifferentiated fat cells (DFATs) isolated from mature adipocytes have a multilineage differentiation capacity similar to mesenchymal stem cells and are considered as promising source of cells for tissue engineering. Bone morphogenetic protein 9 (BMP9) and low-intensity pulsed ultrasound (LIPUS) have been reported to stimulate bone formation both in vitro and in vivo. However, the combined effect of BMP9 and LIPUS on osteoblastic differentiation of DFATs has not been studied. After preparing DFATs from mature adipose tissue from rats, DFATs were treated with different doses of BMP9 and/or LIPUS. The effects on osteoblastic differentiation were assessed by changes in alkaline phosphatase (ALP) activity, mineralization/calcium deposition, and expression of bone related genes; Runx2, osterix, osteopontin. No significant differences for ALP activity, mineralization deposition, as well as expression for bone related genes were observed by LIPUS treatment alone while treatment with BMP9 induced osteoblastic differentiation of DFATs in a dose dependent manner. Further, co-treatment with BMP9 and LIPUS significantly increased osteoblastic differentiation of DFATs compared to those treated with BMP9 alone. In addition, upregulation for BMP9-receptor genes was observed by LIPUS treatment. Indomethacin, an inhibitor of prostaglandin synthesis, significantly inhibited the synergistic effect of BMP9 and LIPUS co-stimulation on osteoblastic differentiation of DFATs. LIPUS promotes BMP9 induced osteoblastic differentiation of DFATs in vitro and prostaglandins may be involved in this mechanism.

Clinical significance linked to functional defects in bone morphogenetic protein type 2 receptor, BMPR2

  • Kim, Myung-Jin;Park, Seon Young;Chang, Hae Ryung;Jung, Eun Young;Munkhjargal, Anudari;Lim, Jong-Seok;Lee, Myeong-Sok;Kim, Yonghwan
    • BMB Reports
    • /
    • 제50권6호
    • /
    • pp.308-317
    • /
    • 2017
  • Bone morphogenetic protein type 2 receptor (BMPR2) is one of the transforming growth $factor-{\beta}$ ($TGF-{\beta}$) superfamily receptors, performing diverse roles during embryonic development, vasculogenesis, and osteogenesis. Human BMPR2 consists of 1,038 amino acids, and contains functionally conserved extracellular, transmembrane, kinase, and C-terminal cytoplasmic domains. Bone morphogenetic proteins (BMPs) engage the tetrameric complex, composed of BMPR2 and its corresponding type 1 receptors, which initiates SMAD proteins-mediated signal transduction leading to the expression of target genes implicated in the development or differentiation of the embryo, organs and bones. In particular, genetic alterations of BMPR2 gene are associated with several clinical disorders, including representative pulmonary arterial hypertension, cancers, and metabolic diseases, thus demonstrating the physiological importance of BMPR2. In this mini review, we summarize recent findings regarding the molecular basis of BMPR2 functions in BMP signaling, and the versatile roles of BMPR2. In addition, various aspects of experimentally validated pathogenic mutations of BMPR2 and the linked human diseases will also be discussed, which are important in clinical settings for diagnostics and treatment.