• Title/Summary/Keyword: Bone markers

Search Result 298, Processing Time 0.024 seconds

Flaviviruses Induce Pro-inflammatory and Anti-inflammatory Cytokines from Murine Dendritic Cells through MyD88-dependent Pathway

  • Aleyas, Abi G.;George, Junu A.;Han, Young-Woo;Kim, Hye-Kyung;Kim, Seon-Ju;Yoon, Hyun-A;Eo, Seong-Kug
    • IMMUNE NETWORK
    • /
    • v.7 no.2
    • /
    • pp.66-74
    • /
    • 2007
  • Background: The genus Flavivirus consists of many emerging arboviruses, including Dengue virus (DV), Japanese encephalitis virus (JEV) and West Nile virus (WNV). Effective preventive vaccines remain elusive for these diseases. Mice are being increasingly used as the animal model for vaccine studies. However, the pathogenic mechanisms of these viruses are not clearly understood. Here, we investigated the interaction of DV and JEV with murine bone marrow-derived dendritic cells (bmDC). Methods: ELISA and FACS analysis were employed to investigate cytokine production and phenotypic changes of DCs obtained from bone marrow following flavivirus infection. Results: We observed that these viruses altered the cytokine profile and phenotypic markers. Although both viruses belong to the same family, JEV-infected bmDC produced anti-inflammatory cytokine (IL-10) along with pro-inflammatory cytokines, whereas DV infection induced production of large amounts of pro-inflammatory cytokines (IL-6 and TNF-${\alpha}$) and no IL-10 from murine bmDCs. Both flaviviruses also up-regulated the expression of co-stimulatory molecules such as CD40, CD80 and CD86. JEV infection led to down-regulation of MHC II expression on infected bmDCs. We also found that cytokine production induced by JEV and DV is MyD88-dependent. This dependence was complete for DV, as cytokine production was completely abolished in the absence of MyD88. With regard to JEV, the absence of MyD88 led to a partial reduction in cytokine levels. Conclusion: Here, we demonstrate that MyD88 plays an important role in the pathogenesis of flaviviruses. Our study provides insight into the pathogenesis of JEV and DV in the murine model.

Effects of ID-CBT5101 in Preventing and Alleviating Osteoarthritis Symptoms in a Monosodium Iodoacetate-Induced Rat Model

  • Sim, Boo-Yong;Choi, Hak-Joo;Kim, Min-Goo;Jeong, Dong-Gu;Lee, Don-Gil;Yoon, Jong-Min;Kang, Dae-Jung;Park, Soobong;Ji, Joong-Gu;Joo, In-Hwan;Kim, Dong-Hee
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.7
    • /
    • pp.1199-1208
    • /
    • 2018
  • Osteoarthritis is a disease that affects the articular cartilage and osseous tissue, and can be worsened by aging, overweight status, and post-traumatic arthritis. The present study aimed to evaluate the effect of ID-CBT5101 (tyndallized Clostridium butyricum) on bone metabolism and the inflammatory response in a monosodium iodoacetate-induced rat model of osteoarthritis. ID-CBT5101 was administered orally at doses of $10^8$ or $10^{10}CFU/day$ for 2 weeks before direct injection of monosodium iodoacetate ($3mg/50{\mu}l$ of 0.9% saline) into the intra-articular space of the rats' right knees. The rats subsequently received the same doses of oral ID-CBT5101 for another 4 weeks. We evaluated the treatment effects based on serum biomarkers, mRNA expression, morphological and histopathological analyses of the knee joints, and weight-bearing distribution analysis. Compared with those in control rats, the ID-CBT5101 treatments significantly reduced the serum concentration of inflammation and bone metabolism markers (i.e., COX-2, IL-6, $LTB_4$, and COMP), and significantly increased the concentration of $IFN-{\gamma}$ and glycosaminoglycans. In addition, the ID-CBT5101 treatments inhibited the mRNA expression of matrix metalloproteinases and tissue inhibitors of metalloproteinases (i.e., MMP-2, MMP-3, MMP-9, MMP-13, TIMP-1, and TIMP-2). Furthermore, the ID-CBT5101 treatments effectively preserved the knee cartilage and synovial membrane, and significantly decreased the amount of fibrous tissue. Moreover, compared with that of the negative control group, the ID-CBT5101 treatments increased the weight-bearing distribution by ${\geq}20%$. The results indicate that ID-CBT5101 prevented and alleviated osteoarthritis symptoms. Thus, ID-CBT5101 may be a novel therapeutic option for the management of osteoarthritis.

Comparative Analysis of the Constituents of the Leaves and Roots of Rumex crispus and their Effects on the Differentiation of Human Osteoblast-like MG-63 Cells (소리쟁이 잎과 뿌리 성분 분석 및 사람 조골 유사 MG-63 세포 분화에 미치는 효과 비교)

  • Park, Heajin;Jeong, Jaehoon;Hyun, Hanbit;Kim, Jihye;Kim, Haesung;Oh, Hyun Il;Hwang, Hye Seong;Kim, Ha Hyung
    • YAKHAK HOEJI
    • /
    • v.58 no.5
    • /
    • pp.307-313
    • /
    • 2014
  • Rumex crispus (curled dock), which is a perennial wild plant, has long been used as a laxative, astringent, and medicine to treat blood and skin diseases. We recently reported that the roots of R. crispus are an effective nutraceutical for bone. This study prepared ethanol extracts of the leaves and roots of R. crispus, and analyzed the major constituents using liquid chromatography and mass spectrometry. In addition, their effects on the proliferation and differentiation of human osteoblast-like MG-63 cells, such as cell viability, alkaline phosphatase (ALP) activity, collagen content, and mineralization, were compared. The chromatograms of the chemical constituents of the two extracts exhibited quite different profiles: quercetin and quercitrin were identified as major peaks in the leaf extract, whereas cinnamtannin B1 and procyanidin isomers were the major peaks for the root extract. Neither extract was cytotoxic at concentrations of < $25{\mu}g/ml$. ALP activity and collagen synthesis-which are markers of the early stage of osteogenesis-in MG-63 cells were significantly increased upon the addition of the root extract compared with the addition of the leaf extract. In contrast, the leaf extract had a more stimulatory effect on mineralization-which is marker of the late stage of osteogenesis-in MG-63 cells than did the root extract. In conclusion, extracts of both leaves and roots of R. crispus stimulated the bone-forming activity of osteoblasts; in particular, the root extract was more effective in the early stage of osteoblast differentiation, while the leaf extract was more effective in the late stage. This difference in anabolic activity may be due to differences in the constituents of the leaves and roots. The leaves and roots of R. crispus appear to complement each other as stimulators of bone formation.

Effects of ibuprofen-loaded TiO2 nanotube dental implants in alloxan-induced diabetic rabbits

  • Kim, Young-Gyo;Kim, Wan-Tae;Jung, Bo Hyun;Yoo, Ki-Yeon;Um, Heung-Sik;Chang, Beom-Seok;Lee, Jae-Kwan;Choi, Won-Youl
    • Journal of Periodontal and Implant Science
    • /
    • v.51 no.5
    • /
    • pp.352-363
    • /
    • 2021
  • Purpose: Some systemic conditions, especially diabetes mellitus (DM), adversely affect dental implant success. This study aimed to investigate the effects of ibuprofen-loaded TiO2 nanotube (ILTN) dental implants in alloxan-induced diabetic rabbits. Methods: Twenty-six New Zealand white rabbits were treated with alloxan monohydrate to induce DM. At 2 weeks following DM induction, 3 types of implants (sandblasted, large-grit, and acid-etched [SLA], ILTN, and machined) were placed into the proximal tibia in the 10 rabbits that survived following DM induction. Each type of implant was fitted randomly in 1 of the holes (round-robin method). The animals were administered alizarin (at 3 weeks) and calcein (at 6 weeks) as fluorescent bone markers, and were sacrificed at 8 weeks for radiographic and histomorphometric analyses. Results: TiO2 nanotube arrays of ~70 nm in diameter and ~17 ㎛ in thickness were obtained, and ibuprofen was loaded into the TiO2 nanotube arrays. A total of 26 rabbits were treated with alloxan monohydrate and only 10 rabbits survived. The 10 surviving rabbits showed a blood glucose level of 300 mg/dL or higher, and the implants were placed in these diabetic rabbits. The implant stability quotient (ISQ) and bone-to-implant contact (BIC) values were significantly higher in the ILTN group (ISQ: 61.8, BIC: 41.3%) and SLA group (ISQ: 62.6, BIC: 46.3%) than in the machined group (ISQ: 53.4, BIC: 20.2%), but the difference in the BIC percentage between the SLA and ILTN groups was not statistically significant (P=0.628). However, the bone area percentage was significantly higher in the ILTN group (78.0%) than in the SLA group (52.1%; P=0.000). Conclusions: The: ILTN dental implants showed better stability (ISQ) and BIC than the machined implants; however, these values were similar to the commercially used SLA implants in the 2-week diabetic rabbit model.

Differentiation of Human Embryonic Stem Cells into Germ Cell and Culture Condition for Single Embryonic Stem Cells Dissociated by Enzyme (인간 배아줄기세포의 생식세포로의 분화 및 효소에 의해 분리된 단일줄기세포 배양조건)

  • Chi, Hee-Jun;Choi, Soon-Young;Chung, Da-Yeon
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.37 no.1
    • /
    • pp.13-23
    • /
    • 2010
  • Objective: The present study was carried out to induce differentiation of human embryonic stem cells (hESCs) into germ cells and to establish a culture condition for single hESCs dissociated by enzyme. Methods: Embryonic body (EB) was formed by hanging drop culture for 3 days from hESCs colony. The EBs were cultured in the medium supplemented with retionic acid (RA) or/and bone morphogenetic protein-4 (BMP4) for 14 days to differentiate into germ cells. Germ cell specific markers, c-kit and VASA were used for immunohistochemistry of EB. Human ESCs colonies were dissociated into single cells by Collagenase, Tryple and Accutase, and then colony formation rate of the single cells was examined. Rho-associated kinase inhibitor (ROCK inhibitor, Y27632) was added into the culture medium of single cells to reduce the apoptotic damage during the dissociation. Results: Single cells dissociated with Tryple or Accutase showed higher colony formation rates compared to the cells dissociated with Collagenase. Seeding of $5{\times}10^3$ cells/well (4 well dish) was efficient to obtain high colony formation rate compared to other concentrations of seeding cell. Addition of Y27632 significantly increased the colony formation rate of the single cells dissociated by Tryple. Immunohistochemistry of EB with c-kit and VASA markers showed a weak fluorescence signals compared to the signals from the testicular tissue. Conclusion: Dissociation with Tryple was useful to obtain healthy single cells and addition of Y27632 was beneficial for survival and colony formation of the single cells. Unlike other studies, we just observed a dim fluorescence staining of the germ cell markers, probably caused by the short-term culture for the differentiation of EB compared to other studies.

Surface maker and gene expression of human adipose stromal cells growing under human serum. (인체혈청 하에서 배양한 인체지방기질줄기세포의 표면항원 및 유전자 발현)

  • Jun, Eun-Sook;Cho, Hyun-Hwa;Joo, Hye-Joon;Kim, Hoe-Kyu;Bae, Yong-Chan;Jung, Jin-Sup
    • Journal of Life Science
    • /
    • v.17 no.5 s.85
    • /
    • pp.678-686
    • /
    • 2007
  • Human mesenchymal stem cells(hMSC), that have been reported to be present in bone marrow, adipose tissues, dermis, muscles and peripheral blood, have the potential to differentiate along different lineages including those forming bone, cartilage, fat, muscle and neuron. Therefore, hMSC are attractive candidates for cell and gene therapy. The optimal conditions for hMSC expansion require medium supplemented with fetal bovine serum(FBS). Some forms of cell therapy will involve multiple doses, raising a concern over immunological reactions caused by medium-derived FBS proteins. Previously, we have shown that hADSC can be cultured in human serum(HS) during their isolation and expansion, and that they maintain their proliferative capacity and ability for multilineage differentiation and promote engraftment of peripheral blood-derived CD34 cells mobilized from bone marrow in NOD/SCID mice. In this study we determined whether hADSC grown in HS maintain surface markers expression similar with cells grown in FBS during culture expansion and compared gene expression profile by Affymetrix microarray. Flow cytometry analysis showed that HLA-DR, CD117, CD29 and CD44 expression in HS-cultured hADSC during culture expansion were similar with that in FBS-cultured cells. However, the gene expression profile in HS-cultured hADSC was significantly different from that in FBS-cultured cells. Therefore, these data indicated that HS-cultured hADSC should be used in vivo animal study of hADSC transplantation for direct extrapolation of preclinical data into clinical application.

Induction of Angiogenesis by Matrigel Coating of VEGF-Loaded PEG/PCL-Based Hydrogel Scaffolds for hBMSC Transplantation

  • Jung, Yeon Joo;Kim, Kyung-Chul;Heo, Jun-Young;Jing, Kaipeng;Lee, Kyung Eun;Hwang, Jun Seok;Lim, Kyu;Jo, Deog-Yeon;Ahn, Jae Pyoung;Kim, Jin-Man;Huh, Kang Moo;Park, Jong-Il
    • Molecules and Cells
    • /
    • v.38 no.7
    • /
    • pp.663-668
    • /
    • 2015
  • hBMSCs are multipotent cells that are useful for tissue regeneration to treat degenerative diseases and others for their differentiation ability into chondrocytes, osteoblasts, adipocytes, hepatocytes and neuronal cells. In this study, biodegradable elastic hydrogels consisting of hydrophilic poly(ethylene glycol) (PEG) and hydrophobic poly(${\varepsilon}$-caprolactone) (PCL) scaffolds were evaluated for tissue engineering because of its biocompatibility and the ability to control the release of bioactive peptides. The primary cultured cells from human bone marrow are confirmed as hBMSC by immunohistochemical analysis. Mesenchymal stem cell markers (collagen type I, fibronectin, CD54, $integrin1{\beta}$, and Hu protein) were shown to be positive, while hematopoietic stem cell markers (CD14 and CD45) were shown to be negative. Three different hydrogel scaffolds with different block compositions (PEG:PCL=6:14 and 14:6 by weight) were fabricated using the salt leaching method. The hBMSCs were expanded, seeded on the scaffolds, and cultured up to 8 days under static conditions in Iscove's Modified Dulbecco's Media (IMDM). The growth of MSCs cultured on the hydrogel with PEG/PCL= 6/14 was faster than that of the others. In addition, the morphology of MSCs seemed to be normal and no cytotoxicity was found. The coating of the vascular endothelial growth factor (VEGF) containing scaffold with Matrigel slowed down the release of VEGF in vitro and promoted the angiogenesis when transplanted into BALB/c nude mice. These results suggest that hBMSCs can be supported by a biode gradable hydrogel scaffold for effective cell growth, and enhance the angiogenesis by Matrigel coating.

Differentiation of Dopaminergic Neurons from Mesenchymal-Like Stem Cells Derived from Human Umbilical Cord Vein

  • Kim, Ju-Ran;Lee, Jin-Ha;Jalin, Anjela Melinda;Lee, Chae-Yeon;Kang, Ah-Reum;Do, Byung-Rok;Kim, Hea-Kwon;Kam, Kyung-Yoon;Kang, Sung-Goo
    • Development and Reproduction
    • /
    • v.13 no.3
    • /
    • pp.173-181
    • /
    • 2009
  • One of the most extensively studied populations of multipotent adult stem cells are mesenchymal stem cells (MSCs). MSCs derived from the human umbilical cord vein (HUC-MSCs) are morphologically and immunophenotypically similar to MSCs isolated from bone marrow. HUC-MSCs are multipotent stem cells, differ from hematopoietic stem cells and can be differentiated into neural cells. Since neural tissue has limited intrinsic capacity of repair after injury, the identification of alternate sources of neural stem cells has broad clinical potential. We isolated mesenchymal-like stem cells from the human umbilical cord vein, and studied transdifferentiation-promoting conditions in neural cells. Dopaminergic neuronal differentiation of HUC-MSCs was also studied. Neural differentiation was induced by adding bFGF, EGF, dimethyl sulfoxide (DMSO) and butylated hydroxyanisole (BHA) in N2 medium and N2 supplement. The immunoreactive cells for $\beta$-tubulin III, a neuron-specific marker, GFAP, an astrocyte marker, or Gal-C, an oligodendrocyte marker, were found. HUC-MSCs treated with bFGF, SHH and FGF8 were differentiated into dopaminergic neurons that were immunopositive for tyrosine hydroxylase (TH) antibody. HUC-MSCs treated with DMSO and BHA rapidly showed the morphology of multipolar neurons. Both immunocytochemistry and RT-PCR analysis indicated that the expression of a number of neural markers including NeuroD1, $\beta$-tubulin III, GFAP and nestin was markedly elevated during this acute differentiation. While the stem cell markers such as SCF, C-kit, and Stat-3 were not expressed after neural differentiation, we confirmed the differentiation of dopaminergic neurons by TH/$\beta$-tubulin III positive cells. In conclusion, HUC-MSCs can be differentiated into dopaminergic neurons and these findings suggest that HUC-MSCs are alternative cell source of therapeutic treatment for neurodegenerative diseases.

  • PDF

Inhalation of Bacterial Cellulose Nanofibrils Triggers an Inflammatory Response and Changes Lung Tissue Morphology of Mice

  • Silva-Carvalho, Ricardo;Silva, Joao P.;Ferreirinha, Pedro;Leitao, Alexandre F.;Andrade, Fabia K.;da Costa, Rui M. Gil;Cristelo, Cecilia;Rosa, Morsyleide F.;Vilanova, Manuel;Gama, F. Miguel
    • Toxicological Research
    • /
    • v.35 no.1
    • /
    • pp.45-63
    • /
    • 2019
  • In view of the growing industrial use of Bacterial cellulose (BC), and taking into account that it might become airborne and be inhaled after industrial processing, assessing its potential pulmonary toxic effects assumes high relevance. In this work, the murine model was used to assess the effects of exposure to respirable BC nanofibrils (nBC), obtained by disintegration of BC produced by Komagataeibacter hansenii. Murine bone marrow-derived macrophages ($BMM{\Phi}$) were treated with different doses of nBC (0.02 and 0.2 mg/mL, respectively 1 and $10{\mu}g$ of fibrils) in absence or presence of 0.2% Carboxymethyl Cellulose (nBCMC). Furthermore, mice were instilled intratracheally with nBC or nBCMC at different concentrations and at different time-points and analyzed up to 6 months after treatments. Microcrystaline $Avicel-plus^{(R)}$ CM 2159, a plant-derived cellulose, was used for comparison. Markers of cellular damage (lactate dehydrogenase release and total protein) and oxidative stress (hydrogen peroxidase, reduced glutathione, lipid peroxidation and glutathione peroxidase activity) as well presence of inflammatory cells were evaluated in brochoalveolar lavage (BAL) fluids. Histological analysis of lungs, heart and liver tissues was also performed. BAL analysis showed that exposure to nBCMC or CMC did not induce major alterations in the assessed markers of cell damage, oxidative stress or inflammatory cell numbers in BAL fluid over time, even following cumulative treatments. $Avicel-plus^{(R)}$ CM 2159 significantly increased LDH release, detected 3 months after 4 weekly administrations. However, histological results revealed a chronic inflammatory response and tissue alterations, being hypertrophy of pulmonary arteries (observed 3 months after nBCMC treatment) of particular concern. These histological alterations remained after 6 months in animals treated with nBC, possibly due to foreign body reaction and the organism's inability to remove the fibers. Overall, despite being a safe and biocompatible biomaterial, BC-derived nanofibrils inhalation may lead to lung pathology and pose significant health risks.

Effects of soy protein supplementation and treadmill running exercise on the changes of body composition, blood metabolic markers, estradiol, estrogen receptor gene expression in ovariectomized rats (콩 단백질 섭취 및 트레드밀 운동이 난소절제 흰쥐의 신체구성, 혈중 대사변인, 에스트라디올 농도 및 에스트로겐 수용체 유전자 발현에 미치는 영향)

  • Kim, K.J.
    • Exercise Science
    • /
    • v.21 no.2
    • /
    • pp.243-254
    • /
    • 2012
  • This study tried to suggest the applicapability of soy protein supplementation and treadmill running exercise for the replacement theraphy on negative effects to estrogen metabolism in menopause. This study was analyzed the effects of 8 week soy protein supplementation and treadmill running exercise on the changes of body composition, blood concentrations of glucose, insulin, triglycerides, C-reactive protein (CRP) and estradiol, estrogen receptor gene expression of liver in ovariectomized rats. Ovariectomized groups showed the increasing responses of body weight, body fat percentage, and blood concentration of triglycerides, but these groups showed the decreasing responses of blood estradiol level and estrogen receptor gene expression in liver. Ovariectomized groups showed the positive responses of blood concentrations of lipid markers, insulin, estradiol, and estrogen receptor gene expression of liver except bone mineral contents after 8 week soy protein supplementation and treadmill running exercise. I could find the positive effects of 8 week soy protein supplementation and treadmill running exercise on the estrogen and lipid metabolism in ovariectomized rats, but this study could not confirmed the detailed replacement program of exercise intensity, duration, and soy protein volume for estrogen metabolism in ovariectomized rats.