• Title/Summary/Keyword: Bonding effect

Search Result 1,411, Processing Time 0.023 seconds

Adsorption Removal of Sr by Barium Impregnated 4A Zeolite (BaA) From High Radioactive Seawater Waste (Barium이 함침된 4A 제올라이트 (BaA)에 의한 고방사성해수폐액에서 Sr의 흡착 제거)

  • Lee, Eil-Hee;Lee, Keun-Young;Kim, Kwang-Wook;Kim, Ik-Soo;Chung, Dong-Yong;Moon, Jei-Kwon;Choi, Jong-Won
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.14 no.2
    • /
    • pp.101-112
    • /
    • 2016
  • This study investigated the removal of Sr, which was one of the high radioactive nuclides, by adsorption with Barium (Ba) impregnated 4A zeolite (BaA) from high-radioactive seawater waste (HSW). Adsorption of Sr by BaA (BaA-Sr), in the impregnated Ba concentration of above 20.2wt%, was decreased by increasing the impregnated Ba concentration, and the impregnated Ba concentration was suitable at 20.2wt%. The BaA-Sr adsorption was added to the co-precipitation of Sr with $BaSO_4$ precipitation in the adsorption of Sr by 4A (4A-Sr) within BaA. Thus, it was possible to remove Sr more than 99% at m/V (adsorbent weight/solution volume)=5 g/L for BaA and m/V >20 g/L for 4A, respectively, in the Sr concentration of less than 0.2 mg/L (actual concentration level of Sr in HSW). It shows that BaA-Sr adsorption is better than 4A-Sr adsorption in for the removal capacity of Sr per unit gram of adsorbent, and the reduction of the secondary solid waste generation (spent adsorbent etc.). Also, BaA-Sr adsorption was more excellent removal capacity of Sr in the seawater waste than distilled water. Therefore, it seems to be effective for the direct removal of Sr from HSW. On the other hand, the adsorption of Cs by BaA (BaA-Cs) was mainly performed by 4A within BaA. Accordingly, it seems to be little effect of impregnated Ba into BaA. Meanwhile, BaA-Sr adsorption kinetics could be expressed the pseudo-second order rate equation. By increasing the initial Sr concentrations and the ratios of V/m, the adsorption rate constants ($k_2$) were decreased, but the equilibrium adsorption capacities ($q_e$) were increasing. However, with increasing the temperature of solution, $k_2$ was conversely increased, and $q_e$ was decreased. The activation energy of BaA-Sr adsorption was 38 kJ/mol. Thus, the chemical adsorption seems to be dominant rather than physical adsorption, although it is not a chemisorption with strong bonding form.

Shear bond strength of Universal bonding systems to Ni-Cr alloy (니켈-크롬 합금에 대한 다용도 접착 시스템의 전단결합강도)

  • Song, So-Yeon;Son, Byung-Wha;Kim, Jong-Yeob;Shin, Sang-Wan;Lee, Jeong-Yol
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.53 no.4
    • /
    • pp.295-300
    • /
    • 2015
  • Purpose: The aim of this study was to evaluate the shear bond strength between Ni-Cr alloy and composite resin using universal adhesive systems coMPared to conventional method using metal primers. Materials and methods: For this study, a total of 120 cast commercial Ni-Cr alloy (Vera Bond 2V) disks were embedded in acrylic resin, and their surfaces were smoothed with silicon carbide papers and airborne-particle abrasion. Specimens of each metal were divided into 6 groups based on the combination of metal primers (Metal primer II, Alloy primer, Metal & Zirconia primer, MKZ primer) and universal adhesive systems (Single Bond Universal, All Bond Universal). All specimens were stored in distilled water at $37^{\circ}C$ for 24 hours. Shear bond strength testing was performed with a universal testing machine at a cross head speed of 1 m/min. Data (MPa) were analyzed using one-way ANOVA and the post hoc Tukey's multiple comparison test (${\alpha}$=.05). Results: There were significant differences between Single Bond Universal, All Bond Universal, Metal Primer II and Alloy Primer, MKZ Primer, Metal & Zirconia Primer (P<.001). Conclusion: Universal Adhesive system groups indicated high shear bond strength value bonded to Ni-Cr alloy than that of conventional system groups using primers except Metal Primer II. Within the limitations of this study, improvement of universal adhesive systems which can be applied to all types of restorations is recommended especially non-precious metal alloy. More research is needed to evaluate the effect of silane inclusion or exclusion in universal adhesive systems.

Experimental Studies on the Properties of Epoxy Resin Mortars (에폭시 수지 모르터의 특성에 관한 실험적 연구)

  • 연규석;강신업
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.26 no.1
    • /
    • pp.52-72
    • /
    • 1984
  • This study was performed to obtain the basic data which can be applied to the use of epoxy resin mortars. The data was based on the properties of epoxy resin mortars depending upon various mixing ratios to compare those of cement mortar. The resin which was used at this experiment was Epi-Bis type epoxy resin which is extensively being used as concrete structures. In the case of epoxy resin mortar, mixing ratios of resin to fine aggregate were 1: 2, 1: 4, 1: 6, 1: 8, 1:10, 1 :12 and 1:14, but the ratio of cement to fine aggregate in cement mortar was 1 : 2.5. The results obtained are summarized as follows; 1.When the mixing ratio was 1: 6, the highest density was 2.01 g/cm$^3$, being lower than 2.13 g/cm$^3$ of that of cement mortar. 2.According to the water absorption and water permeability test, the watertightness was shown very high at the mixing ratios of 1: 2, 1: 4 and 1: 6. But then the mixing ratio was less than 1 : 6, the watertightness considerably decreased. By this result, it was regarded that optimum mixing ratio of epoxy resin mortar for watertight structures should be richer mixing ratio than 1: 6. 3.The hardening shrinkage was large as the mixing ratio became leaner, but the values were remarkably small as compared with cement mortar. And the influence of dryness and moisture was exerted little at richer mixing ratio than 1: 6, but its effect was obvious at the lean mixing ratio, 1: 8, 1:10,1:12 and 1:14. It was confirmed that the optimum mixing ratio for concrete structures which would be influenced by the repeated dryness and moisture should be rich mixing ratio higher than 1: 6. 4.The compressive, bending and splitting tensile strenghs were observed very high, even the value at the mixing ratio of 1:14 was higher than that of cement mortar. It showed that epoxy resin mortar especially was to have high strength in bending and splitting tensile strength. Also, the initial strength within 24 hours gave rise to high value. Thus it was clear that epoxy resin was rapid hardening material. The multiple regression equations of strength were computed depending on a function of mixing ratios and curing times. 5.The elastic moduli derived from the compressive stress-strain curve were slightly smaller than the value of cement mortar, and the toughness of epoxy resin mortar was larger than that of cement mortar. 6.The impact resistance was strong compared with cement mortar at all mixing ratios. Especially, bending impact strength by the square pillar specimens was higher than the impact resistance of flat specimens or cylinderic specimens. 7.The Brinell hardness was relatively larger than that of cement mortar, but it gradually decreased with the decline of mixing ratio, and Brinell hardness at mixing ratio of 1 :14 was much the same as cement mortar. 8.The abrasion rate of epoxy resin mortar at all mixing ratio, when Losangeles abation testing machine revolved 500 times, was very low. Even mixing ratio of 1 :14 was no more than 31.41%, which was less than critical abrasion rate 40% of coarse aggregate for cement concrete. Consequently, the abrasion rate of epoxy resin mortar was superior to cement mortar, and the relation between abrasion rate and Brinell hardness was highly significant as exponential curve. 9.The highest bond strength of epoxy resin mortar was 12.9 kg/cm$^2$ at the mixing ratio of 1:2. The failure of bonded flat steel specimens occurred on the part of epoxy resin mortar at the mixing ratio of 1: 2 and 1: 4, and that of bonded cement concrete specimens was fond on the part of combained concrete at the mixing ratio of 1 : 2 ,1: 4 and 1: 6. It was confirmed that the optimum mixing ratio for bonding of steel plate, and of cement concrete should be rich mixing ratio above 1 : 4 and 1 : 6 respectively. 10.The variations of color tone by heating began to take place at about 60˚C, and the ultimate change occurred at 120˚C. The compressive, bending and splitting tensile strengths increased with rising temperature up to 80˚ C, but these rapidly decreased when temperature was above 800 C. Accordingly, it was evident that the resistance temperature of epoxy resin mortar was about 80˚C which was generally considered lower than that of the other concrete materials. But it is likely that there is no problem in epoxy resin mortar when used for unnecessary materials of high temperature resistance. The multiple regression equations of strength were computed depending on a function of mixing ratios and heating temperatures. 11.The susceptibility to chemical attack of cement mortar was easily affected by inorganic and organic acid. and that of epoxy resin mortar with mixing ratio of 1: 4 was of great resistance. On the other hand, when mixing ratio was lower than 1 : 8 epoxy resin mortar had very poor resistance, especially being poor resistant to organicacid. Therefore, for the structures requiring chemical resistance optimum mixing of epoxy resin mortar should be rich mixing ratio higher than 1: 4.

  • PDF

EFFECT OF LIGHT IRRADIATION MODES ON THE MARGINAL LEAKAGE OF COMPOSITE RESIN RESTORATION (광조사 방식이 복합레진 수복물의 변연누출에 미치는 영향)

  • 박은숙;김기옥;김성교
    • Restorative Dentistry and Endodontics
    • /
    • v.26 no.4
    • /
    • pp.263-272
    • /
    • 2001
  • The aim of this study was to investigate the influence of four different light curing modes on the marginal leakage of Class V composite resin restoration. Eighty extracted human premolars were used. Wedge-shaped class Y cavities were prepared on the buccal surface of the tooth with high-speed diamond bur without bevel. The cavities were positioned half of the cavity above and half beyond the cemento-enamel junction. The depth, height, and width of the cavity were 2 mm, 3 mm and 2 mm respectively. The specimens were divided into 4 groups of 20 teeth each. All the specimen cavities were treated with Prime & Bond$^{R}$ NT dental adhesive system (Dentsply DeTrey GmbH, Germany) according to the manufacturer's instructions and cured for 10 seconds except group VI which were cured for 3 seconds. All the cavities were restored with resin composite Spectrum$^{TM}$ TPH A2 (Dentsply DeTrey GmbH, Germany) in a bulk. Resin composites were light-cured under 4 different modes. A regular intensity group (600 mW/${cm}^2$, group I) was irradiated for 30 s, a low intensity group (300 mW/${cm}^2$, group II) for 60 s and a ultra-high intensity group (1930 mW/${cm}^2$, group IV) for 3 s. A pulse-delay group (group III) was irradiated with 400 mW/${cm}^2$ for 2 s followed by 800 mW/${cm}^2$ for 10 s after 5 minutes delay. The Spectrum$^{TM}$ 800 (Dentsply DeTrey GmbH, Germany) light-curing units were used for groups I, II and III and Apollo 95E (DMD, U.S.A.) was used for group IV. The composite resin specimens were finished and polished immediately after light curing except group III which were finished and polished during delaying time. Specimens were stored in a physiologic saline solution at 37$^{\circ}C$ for 24 hours. After thermocycling (500$\times$, 5-55$^{\circ}C$), all teeth were covered with nail varnish up to 0.5 mm from the margins of the restorations, immersed in 37$^{\circ}C$, 2% methylene blue solution for 24 hours, and rinsed with tap water for 24 hours. After embedding in clear resin, the specimens were sectioned with a water-cooled diamond saw (Isomet$^{TM}$, Buehler Co., Lake Bluff, IL, U.S.A.) along the longitudinal axis of the tooth so as to pass the center of the restorations. The cut surfaces were examined under a stereomicroscope (SZ-PT Olympus, Japan) at ${\times}$25 magnification, and the images were captured with a CCD camera (GP-KR222, Panasonic, Japan) and stored in a computer with Studio Grabber program. Dye penetration depth at the restoration/dentin and the restoration/enamel interfaces was measured as a rate of the entire depth of the restoration using a software (Scion image, Scion Corp., U.S.A.) The data were analysed statistically using One-way ANOVA and Tukey's method. The results were as follows : 1. Pulse-Delay group did not show any significant difference in dye penetration rate from other groups at enamel and dentin margins (p>0.05) 2. At dentin margin, ultra-high intensity group showed significantly higher dye penetration rate than both regular intensity group and low intensity group (p<0.05). 3. At enamel margin, there were no statistically significant difference among four groups (p>0.05). 4. Dentin margin showed significantly higher dye penetration rate than enamel margin in all groups (p<0.05).

  • PDF

A histomorphometric study on the effect of surface treatment on the osseointegration (티타늄 임플란트의 표면처리가 골유착에 미치는 영향에 관한 조직형태계측학적 연구)

  • Choi, Woong-Jae;Cho, In-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.47 no.4
    • /
    • pp.445-456
    • /
    • 2009
  • Statement of problem: Many studies have been conducted to improve the primary stability of implants by providing bioactive surfaces via surface treatments. Increase of surface roughness may increase osteoblast activity and promote stronger bonding between bone and implant surface and it has been reported that bioactive surface or titanium can be obtained through alkali and heat treatment. Purpose: The purpose of this study was to evaluate the stability of alkali and heat treated implants via histomorphometric analysis. Material and methods: Specimens were divided into three groups; group 1 was the control group with machined surface, the other groups were treated for 24 hours in 5 M NaOH solution and heat treated for 1 hour at $600^{\circ}C$ in the atmosphere (group 2) and vacuum (group 3) conditions respectively. Surface characteristics were analyzed and fixtures were implanted into rabbits. The specimens were histologically and histomorphometrically compared according to healing periods and change in bone composition were analyzed with EPMA (Electron Probe Micro Analyzer). Results: 1. Groups treated with alkali and heat showed increase of oxidization layer and Na ions. Groups 2 which was heat treated in atmosphere showed significant increase of surface roughness (P<.05). 2. Histomorphometric analysis showed significant increase in BIC (bone to implant contact) according to increase in healing period and there was significant increases in groups 2 and 3 (P<.05). 3. BA(bone area) ratio showed similar results as contact ratio, but according to statistical analysis there was significant increase according to increase in healing period in group 2 only (P<.05). 4. EPMA analysis revealed no difference in gradation of bone composition of K, P, Ca, Ti in surrounding bone of implants according to healing periods but groups 2 and 3 showed increase of Ca and P in the initial stages. Conclusion: From the results above, it can be considered that alkali and heat treated implants in the atmosphere have advantages in osseointegration in early stages and may decrease the time interval between implantation and functional adaptation.

Thermodynamic Properties for the Chemical Reactions of [Cu(dl-trans-[14]-diene)]$^{2+}$ with S$_2O_3^{2-},\;SCN^-,\;I^-\;and\;NO_2^-$ ([Cu(dl-trans-[14]-diene)]$^{2+}$ 착이온과 음이온 (S$_2O_3^{2-},\;SCN^-,\;I^-$ 및 NO$_2^-$)간의 화학반응에 대한 열역학적 성질 (${\Delta}G;\;{\Delta}H;\;{\Delta}V$))

  • Yu Chul Park;Jong Chul Byun
    • Journal of the Korean Chemical Society
    • /
    • v.29 no.3
    • /
    • pp.239-246
    • /
    • 1985
  • The equilibria of chemical reaction between [Cu(dl-trans-[14]-diene)]$^{2+}$ and L$^{n-}$(S$_2$O$_3^{2-}$, SCN$^-$, I$^-$, NO$_2^-$) ions were studied by the spectrophotometric method in the range of 15 to 35$^{\circ}C$ and 1 to 1500bar. The equilibrium constants(K) for L$^{n-}$ = S$_2$O$_3^{2-}$, SCN$^-$, I$^-$ and NO$_2^-$ ions at 25$^{\circ}C$ and 1500bar were 3.0, 1.9, 0.6 and 0.5, respectively. The values of K decreased with increasing pressure and temperature. From the temperature effect on equlibrium constant, the thermodynamic parameters(${\Delta}G^{\circ}$, ${\Delta}H^{\circ}$, ${\Delta}S^{\circ}$) of reaction were evaluated and the reactions of [Cu(dl-trans-[14]-diene)]2+ ion with S$_2$O$_3^{2-}$, SCN$^-$ and I$^-$ except NO$_2^-$ ion were exothermic. The volume changes of reaction(${\Delta}$V) had positive values for all the used anions. The values of ${\Delta}$V in cm$^3$/mole for S$_2$O$_3^{2-}$ ion at 1,500, 1,000 and 1,500bar were 26, 22, 19 and 16, and those for S$_2$O$_3^{2-}$, SCN$^-$, I$^-$ and NO$_2^-$ ions at atmospheric pressure 26, 30, 64 and 45, respectively. Bonding character between Cu(Ⅱ)-complex ion and L$^{n-}$ was discussed by comparing both the equlibrium constants experimentally determined and those calculated according to Fuoss's ion-pair equation in case of S$_2$O$_3^{2-}$ ion.

  • PDF

Microstructure of ZnO Thin Film on Nano-Scale Diamond Powder Using ALD (나노급 다이아몬드 파우더에 ALD로 제조된 ZnO 박막 연구)

  • Park, S.J.;Song, S.O.
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.6
    • /
    • pp.538-543
    • /
    • 2008
  • Recently a nano-scale diamond is possible to manufacture forms of powder(below 100 nm) by new processing of explosion or deposition method. Using a sintering of nano-scale diamond is possible to manufacture of grinding tools. We have need of a processing development of coated uniformly inorganic to prevent an abnormal grain growth of nano-crystal and bonding obstacle caused by sintering process. This paper, in order to improve the sintering property of nano-scale diamond, we coated ZnO thin films(thickness: $20{\sim}30\;nm$) in a vacuum by ALD(atomic layer deposition) Economically, in order to deposit ZnO all over the surface of nano-scale diamond powder, we used a new modified fluidized bed processing replaced mechanical vibration effect or fluidized bed reactor which utilized diamond floating owing to pressure of pulse(or purge) processing after inserted diamond powders in quartz tube(L: 20 mm) then closed quartz tube by porosity glass filter. We deposited ZnO thin films by ALD in closed both sides of quartz tube by porosity glass filter by ALD(precursor: DEZn($C_4H_{10}Zn$), reaction gas: $H_2O$) at $10^{\circ}C$(in canister). Processing procedure and injection time of reaction materials set up DEZn pulse-0.1 sec, DEZn purge-20 sec, $H_2O$ pulse-0.1 sec, $H_2O$ purge-40 sec and we put in operation repetitive 100 cycles(1 cycle is 4 steps) We confirmed microstructure of diamond powder and diamond powder doped ZnO thin film by TEM(transmission electron microscope) Through TEM analysis, we confirmed that diamond powder diameter was some $70{\sim}120\;nm$ and shape was tetragonal, hexagonal, etc before ALD. We confirmed that diameter of diamond powders doped ZnO thin film was some $70{\sim}120\;nm$ and uniform ZnO(thickness: $20{\sim}30\;nm$) thin film was successfully deposited on diamond powder surface according to brightness difference between diamond powder and ZnO.

THE INFLUENCE OF CAVITY CONFIGURATION ON THE MICROTENSILE BOND STRENGTH BETWEEN COMPOSITE RESIN AND DENTIN (와동의 형태가 상아질과 복합레진 사이의 미세인장결합강도에 미치는 영향)

  • Kim, Ye-Mi;Park, Jeong-Won;Lee, Chan-Young;Song, Yoon-Jung;Seo, Deok-Kyu;Roh, Byoung-Duck
    • Restorative Dentistry and Endodontics
    • /
    • v.33 no.5
    • /
    • pp.472-480
    • /
    • 2008
  • This study was conducted to evaluate the influence of the C-factor on the bond strength of a 6th generation self-etching system by measuring the microtensile bond strength of four types of restorations classified by different C-factors with an identical depth of dentin. Eighty human molars were divided into four experimental groups, each of which had a C-factor of 0.25, 2, 3 or 4. Each group was then further divided into four subgroups based on the adhesive and composite resin used. The adhesives used for this study were AQ Bond Plus (Sun Medical, Japan) and XenoIII (DENTSPLY, Germany). And composite resins used were fantasists (Sun Medical, Japan) and Ceram-X mono (DENTSPLY, Germany). The results were then analyzed using one-way ANOVA, a Tukey's test, and a Pearson's correlation test and were as follows. 1. There was no significant difference among C-factor groups with the exception of groups of Xeno III and Ceram-X mono (p<0.05). 2. There was no significant difference between any of the adhesives and composite resins in groups with C-factor 0.25, 2 and 4. 3. There was no correlation between the change in C-factor and microtensile bond strength in the Fantasista groups. It was concluded that the C-factor of cavities does not have a significant effect on the microtensile bond strength of the restorations when cavities of the same depth of dentin are restored using composite resin in conjunction with the 6th generation self-etching system.

The effects of housing poverty on adolescents' subjective well-being (주거빈곤기간이 청소년의 주관적 행복감에 미치는 영향)

  • Lim, Se Hee;Kim, SunSuk
    • Journal of the Korean Society of Child Welfare
    • /
    • no.56
    • /
    • pp.133-164
    • /
    • 2016
  • This study investigated the effect of housing poverty in childhood on adolescents' subjective well-being. Specifically, this study examined whether the major factors that have been known to affect adolescents' well-being (i.e., family relationships, peer relationships, school adjustment etc.) mediated the relationship between housing poverty and adolescents' well-being. And then this study aimed to present an empirical evidence for establishing policies against housing poverty in order to enhance adolescent's subjective happiness. Data were derived from the $1^{st}$, $4^{th}$, and $7^{th}$ surveys of the Korea Welfare Panel Study(KOWEPS), and the sample included. 512 high school children in the $7^{th}$ survey. This study utilized structural equation modeling. Housing poverty was measured by the sub-minimum standard housing condition and the household's burden of housing expenditure. Family relationship, as a mediator, was measured by parental involvement in education, parental monitoring, and family conflicts. Another mediator, school adjustment was measured by school environment and school bonding, and the last mediator, peer relationship was measured by friend attachment and peer attachment. The results showed that housing poverty had significant negative effects on the adolescents' subjective well-being. The sub-minimum standard housing condition with inadequate size and facilities negatively affected adolescents' relationships with family directly and subjective well-being indirectly. In addition, the negative family relationships due to the sub-minimum standard housing condition negatively affected adolescents' subjective well-being through school adjustment and peer relationships. The greater the proportion of income a household spends on housing expenditure, the less likely for adolescents to report positive well-being. The sub-minimum standard housing condition had indirect effects through family relationships, whereas the household's housing expenditure directly affected adolescents' subjective well-being. This study suggested the necessity of interventions to alleviate housing poverty for adolescents' families and lays the groundwork for housing poverty policies in Korea.

Effect of Cardanol Content on the Antibacterial Films Derived from Alginate-PVA Blended Matrix (알지네이트-폴리비닐알콜 블랜드 항균 필름 제조를 위한 카다놀 함량의 영향)

  • Ahn, Hee Ju;Kang, Kyung Soo;Song, Yun Ha;Lee, Da Hae;Kim, Mun Ho;Lee, Jae Kyoung;Woo, Hee Chul
    • Clean Technology
    • /
    • v.28 no.1
    • /
    • pp.24-31
    • /
    • 2022
  • Petroleum-based plastics are used for various purposes and pose a significant threat to the earth's environment and ecosystem. Many efforts have been taken globally in different areas to find alternatives. As part of these efforts, this study manufactured alginate-based polyvinyl alcohol (PVA) blended films by casting from an aqueous solution prepared by mixing 10 wt% petroleum-based PVA with biodegradable, marine biomass-derived alginate. Glutaraldehyde was used as a cross-linking agent, and cardanol, an alkyl phenol-based bio-oil extracted from cashew nut shell, was added in the range of 0.1 to 2.0 wt% to grant antibacterial activity to the films. FTIR and TGA were performed to characterize the manufactured blended films, and the tensile strength, degree of swelling, and antibacterial activity were measured. Results obtained from the FTIR, TGA, and tensile strength test showed that alginate, the main component, was well distributed in the PVA by forming a matrix phase. The brittleness of alginate, a known weakness as a single component, and the low thermal durability of PVA were improved by cross-linking and hydrogen bonding of the functional groups between alginate and PVA. Addition of cardanol to the alginate-based PVA blend significantly improved the antibacterial activity against S. aureus and E. coli. The antibacterial performance was excellent with a death rate of 98% or higher for S. aureus and about 70% for E. coli at a contact time of 60 minutes. The optimal antibacterial activity of the alginate-PVA blended films was found with a cardanol content range between 0.1 to 0.5 wt%. These results show that cardanol-containing alginate-PVA blended films are suitable for use as various antibacterial materials, including as food packaging.