• 제목/요약/키워드: Bonding Process

검색결과 1,238건 처리시간 0.04초

광/열유체 부품의 접합공정 개발 (Development of bonding processes for micro-optical and thermo-fluidic components)

  • 김정호;이지혜;유중돈;최두선
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 추계학술대회 논문집
    • /
    • pp.137-140
    • /
    • 2002
  • The main objectives in the first year include selection of the MEMS bonding methods and feasibility study of selected methods. The ultrasonic bonding method is chosen for MEMS packaging, and the processes to provide localized heating are proposed. The ultrasonic bonding process is analyzed using a lumped model. Preliminary experiments using the eutectic solder and copper pin were performed to verify possibility to MEMS packaging. The preliminary results show possibility of the ultrasonic bonding method for MEMS packaging.

  • PDF

플렉서블 기반 미세 무연솔더 범프를 이용한 칩 접합 공정 기술 (The Chip Bonding Technology on Flexible Substrate by Using Micro Lead-free Solder Bump)

  • 김민수;고용호;방정환;이창우
    • 마이크로전자및패키징학회지
    • /
    • 제19권3호
    • /
    • pp.15-20
    • /
    • 2012
  • In electronics industry, the coming electronic devices will be expected to be high integration and convergence electronics. And also, it will be expected that the coming electronics will be flexible, bendable and wearable electronics. Therefore, the demands and interests of bonding technology between flexible substrate and chip for mobile electronics, e-paper etc. have been increased because of weight and flexibility of flexible substrate. Considering fine pitch for high density and thermal damage of flexible substrate during bonding process, the micro solder bump technology for high density and low temperature bonding process for reducing thermal damage will be required. In this study, we researched on bonding technology of chip and flexible substrate by using 25um Cu pillar bumps and Sn-Bi solder bumps were formed by electroplating. From the our study, we suggest technology on Cu pillar bump formation, Sn-Bi solder bump formation, and bonding process of chip and flexible substrate for the coming electronics.

구리-타이타늄 복합선재의 번들압출 성형특성 (Forming Characteristics for the Bundle Extrusion of Cu-Ti Bimetal Wires)

  • 이용신;김중식;윤상헌;이호용
    • 소성∙가공
    • /
    • 제18권4호
    • /
    • pp.342-346
    • /
    • 2009
  • Forming characteristics for the bundle extrusion of Cu-Ti bimetal wires are investigated, which can identify the process conditions for weak mechanical bonding at the contact surface during the direct extrusion of a Cu-Ti bimetal wire bundle. Bonding mechanism between Cu and Ti is assumed as a cold pressure welding. Then, the plastic deformation at the contact zone causes mechanical bonding and a new bonding criterion for pressure welding is developed as a function of the principal stretch ratio and normal pressure at the contact surface by analyzing micro local extrusion at the contact zone. The averaged deformation behavior of Cu-Ti bimetal wire is adopted as a constitutive behavior at a material point in the finite element analysis of Cu-Ti wire bundle extrusion. Various process conditions for bundle extrusions are examined. The deformation histories at the three points, near the surface, in the middle and near the center, in the cross section of a bundle are traced and the proposed new bonding criterion is applied to predict whether the mechanical bonding at the Cu-Ti contact surface happens. Finally, a process map for the direct extrusion of Cu-Ti bimetal wire bundle is proposed.

저온 분사 공정을 이용해 적층된 INCONEL 718의 계면접합 저해요인 분석 (Investigating the Cause of Hindrance to the Interfacial Bonding of INCONEL 718 Layer Deposited by Kinetic Spray Process)

  • 김재익;이승태;이창희
    • 한국표면공학회지
    • /
    • 제48권6호
    • /
    • pp.275-282
    • /
    • 2015
  • The cost for maintenance (replacement cost) of Ni-superalloy components in plant industry is very expensive because of high unit price of INCONEL 718. A development of repairing technology using kinetic spray process can be very helpful for reducing the maintenance cost. However, it is very difficult to produce well-deposited INCONEL 718 layer showing high interfacial bond strength via kinetic spraying. Thus, INCONEL 718 was deposited on SCM 440 substrate and the interfacial properties were investigated, in order to elucidate the cause of hindrance to the bonding between INCONEL 718 layer and SCM 440 substrate. As a result, it was revealed that the dominant obstacle to the interfacial bonding was excessive compressive residual stress accumulated in the coating layer, resulting from low plastic-deformation susceptibility of INCONEL 718. Nevertheless, the bonding state was enhanced by the post heat-treatment through relieving the residual stress and generating a diffusion/metallurgical bonding between the INCONEL 718 deposit and SCM 440 substrate.

Effect of Tio2 particles on the mechanical, bonding properties and microstructural evolution of AA1060/TiO2 composites fabricated by WARB

  • Vini, Mohamad Heydari;Daneshmand, Saeed
    • Advances in materials Research
    • /
    • 제9권2호
    • /
    • pp.99-107
    • /
    • 2020
  • Reinforced aluminum alloy base composites have become increasingly popular for engineering applications, since they usually possess several desirable properties. Recently, Warm Accumulative Roll Bonding (WARB) process has been used as a new novel process to fabricate particle reinforced metal matrix composites. In the present study, TiO2 particles are used as reinforcement in aluminum metal matrix composites fabricated through warm accumulative roll bonding process. Firstly, the raw aluminum alloy 1060 strips with TiO2 as reinforcement particle were roll bonded to four accumulative rolling cycles by preheating for 5 min at 300℃before each cycle. The mechanical and bonding properties of composites have been studied versus different volume contents of TiO2 particles by tensile test, peeling test and vickers micro-hardness test. Moreover, the fracture surface and peeling surface of samples after the tensile test and peeling test have been studied versus different amount of TiO2 volume contents by scanning electron microscopy. The results indicated that the strength and the average vickers micro-hardness of composites improved by increasing the volume content of TiO2 particles and the amount of their elongation and bonding strength decreased significantly.

Deep cavity를 가진 Cap Wafer와 MEMS 소자의 Polymer Wafer bonding (Polymer Wafer bonding of MEMS device and Cap Wafer with deep cavity)

  • 이현기;박태준;윤상기;박남수;박형재;민종환;이영규
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2011년도 제42회 하계학술대회
    • /
    • pp.1702-1703
    • /
    • 2011
  • MEMS 소자의 Wafer level Package 관련하여 Deep cavity를 가진 Cap Wafer와 Polymer bonding 중 cavity 단차로 인한 Polymer Patterning 및 접합 불량의 어려움을 극복할 수 있는 새로운 공정 flow를 제안하였다. Cavity를 형성할 때 사용하는 Si deep etching Mask인 기존의 Photoresist를 접합용 감광성 Polymer로 대체하고, cavity 형성 후, 별도의 추가 공정 없이 이 Polymer를 이용해 Wafer bonding을 진행하였다. 이를 통해 cavity 단차에 따른 문제를 해결함과 동시에 공정이 단순하고 제작 비용이 저렴하며, 신뢰성 있는 Wafer level Package를 구현하였다.

  • PDF

반응표면분석법을 이용한 LED Die Bonding 공정능력 최적화 (Process Capability Optimization of a LED Die Bonding Using Response Surface Analysis)

  • 하석재;조용규;조명우;이광철;최원호
    • 한국산학기술학회논문지
    • /
    • 제13권10호
    • /
    • pp.4378-4384
    • /
    • 2012
  • LED 칩 패키징에서 다이 본딩은 웨이퍼에서 분할된 다이를 리드 프레임에 접착제로 고정시켜 칩이 다음 공정을 견딜 수 있는 충분한 강도를 제공하는 중요한 공정이다. 본 논문에서는 PLCC 구조 LED 패키지 프레임에 소형 제너 다이오드를 부착하는 다이 본딩 공정능력의 최적화를 위하여 공정에 영향을 미치는 여러 인자를 분석하여 반응표면분석법을 적용하여 그 결과를 도출하였다. 인자를 분석하여 5인자 3수준 4반응치를 고려하여 실험계획법을 수립하였으며, 그 결과 모든 반응치의 목표를 만족하는 최적 조건을 확보할 수 있었다.