• Title/Summary/Keyword: Bonding Interfaces

Search Result 113, Processing Time 0.025 seconds

Characterization of both adhesion and interfacial interaction between optical fiber coating and structural

  • Brotzu, A.;Felli, F.;Fiori, L.;Caponero, M.A.
    • Smart Structures and Systems
    • /
    • v.4 no.4
    • /
    • pp.439-448
    • /
    • 2008
  • Optical fiber sensors are by now broadly accepted as an innovative and reliable device for structural health monitoring, to be used either embedded into or bonded on structures. The accuracy of the strain measurement achievable by optical fiber sensors is critically dependent on the characteristics of the bonding of the various interface layers involved in the sensor bonding/embedding (structure material and gluing agent, fiber coating and gluing agent, fiber coating and fiber core). In fact, the signal of the bonded/embedded optical fiber sensor must correspond to the strain experienced by the monitored structure, but the quality of each involved interface can affect the strain transfer. This paper faces the characterization, carried on by both mechanical tests and morphological analysis, of the strain transfer function resulting with epoxidic and vinylester gluing agent on polyimide and acrylate coated optical fibers.

Interfaces Between Rubber and Metallic or Textile Tire Cords

  • Ooij Wim J. Van;Luo Shijian;Jayaseelan Senthil K,
    • Elastomers and Composites
    • /
    • v.34 no.4
    • /
    • pp.299-314
    • /
    • 1999
  • Bonding metal and textile components to rubber has always posed a problem. In this paper, an attempt had been made to modify textile and metal surfaces for bonding with rubber. The metal surfaces were modified using silane coupling agents and textile fibers were modified using plasma polymerization techniques. Some results on adhesion of metals to a range of sulfur-cured rubber compounds using a combination of organofunctional silanes are given here. The treatment was not only effective for high-sulfur compounds but also for low-sulfur com pounds as used in engine mounts and even for some semi-EV compounds. Coatings of plasmapolymerized pyrrole or acetylene were deposited on aramid and polyester tire cords. Standard pull-out force adhesion measurements were used to determine adhesion of tire cords to rubber compounds. The plasma coatings were characterized by various techniques and the performance results are explained in an interpenetrating network model.

  • PDF

Synthesis and Biocompatibility of the Hydroxyapatite Ceramic Composites from Tuna Bone(III) - SEM Photographs of Bonding Properties between Hydroxyapatite Ceramics Composites in the Simulated Body Fluid- (참치 뼈를 이용한 Hydroxyapatite 세라믹 복합체의 합성 및 생체 친화성(제3보) -인공체액에서의 Hydroxyapatite 세라믹 복합체간의 결합의 전자현미경 관찰-)

  • Kim, Se-Kwon;Choi, Jin-Sam;Lee, Chang-Kook;Byun, Hee-Guk;Jean, You-Jin;Lee, Eung-Ho;Park, In Yong
    • Applied Chemistry for Engineering
    • /
    • v.9 no.3
    • /
    • pp.322-329
    • /
    • 1998
  • Chemical bonding was investigated in the simulated body fluid of several selected hydroxyapatite-containing composites. The hydroxyapatite-containing composites chemically bonded with each other in the simulated body fluid after 4 weeks. Bioglass was strongly bonded in the simulated body fluid, but bonding strength was not depended on composition. Their composite bodies were chemically bonded by heterogeneous nucleation and growth at the interfaces of the specimens in the simulated body fluid.

  • PDF

Modeling of CNTs and CNT-Matrix Interfaces in Continuum-Based Simulations for Composite Design

  • Lee, Sang-Hun;Shin, Kee-Sam;Lee, Woong
    • Korean Journal of Materials Research
    • /
    • v.20 no.9
    • /
    • pp.478-482
    • /
    • 2010
  • A series of molecular dynamic (MD), finite element (FE) and ab initio simulations are carried out to establish suitable modeling schemes for the continuum-based analysis of aluminum matrix nanocomposites reinforced with carbon nanotubes (CNTs). From a comparison of the MD with FE models and inferences based on bond structures and electron distributions, we propose that the effective thickness of a CNT wall for its continuum representation should be related to the graphitic inter-planar spacing of 3.4${\AA}$. We also show that shell element representation of a CNT structure in the FE models properly simulated the carbon-carbon covalent bonding and long-range interactions in terms of the load-displacement behaviors. Estimation of the effective interfacial elastic properties by ab initio simulations showed that the in-plane interfacial bond strength is negligibly weaker than the normal counterpart due to the nature of the weak secondary bonding at the CNT-Al interface. Therefore, we suggest that a third-phase solid element representation of the CNT-Al interface in nanocomposites is not physically meaningful and that spring or bar element representation of the weak interfacial bonding would be more appropriate as in the cases of polymer matrix counterparts. The possibility of treating the interface as a simply contacted phase boundary is also discussed.

Anodic bonding Characteristics of MLCA to Si-wafer Using Evaporated Pyrex #7740 Glass Thin-Films for MEMS Applications (파이렉스 #7740 유리박막을 이용한 MEMS용 MLCA와 Si기판의 양극접합 특성)

  • Chung, Gwiy-Sang;Kim, Jae-Min;Yoon, Suk-Jin
    • Journal of Sensor Science and Technology
    • /
    • v.12 no.6
    • /
    • pp.265-272
    • /
    • 2003
  • This paper describes anodic bonding characteristics of MLCA (Multi Layer Ceramic Actuator) to Si-wafer using evaporated Pyrex #7740 glass thin-films for MEMS applications. Pyrex #7740 glass thin-films with same properties were deposited on MLCA under optimum RF magneto conditions(Ar 100%, input power $1\;W/cm^2$). After annealing in $450^{\circ}C$ for 1 hr, the anodic bonding of MLCA and Si-wafer was successfully performed at 600 V, $400^{\circ}C$ in - 760 mmHg. Then, the MLCA/Si bonded interface and fabricated Si diaphragm deflection characteristics were analyzed through the actuation test. It is possible to control with accurate deflection of Si diaphragm according to its geometries and its maximum non-linearity is 0.05-0.08 %FS. Moreover, any damages or separation of MLCA/Si bonded interfaces do not occur during actuation test. Therefore, it is expected that anodic bonding technology of MLCA/Si wafers could be usefully applied for the fabrication process of high-performance piezoelectric MEMS devices.

AN EXPERIMENTAL STUDY ON THE ALTERATIONS OF ION-BEAM-ENHANCED ADHESIONS ON A VARIETY OF CERAMIC-METAL INTERFACES (이온선 혼합법이 도재-금속 계면 변화에 미치는 영향에 관한 실험적 연구)

  • Chung Keug-Mo;Park Nam-Soo;Woo Yi-Hyung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.30 no.2
    • /
    • pp.135-154
    • /
    • 1992
  • This study was performed to analyze bond strength, the alterations of the interfaces between metal films which are populary used and considered to contribute to the chemical reaction with porcelain, according to constant ion- beam- mixing, and the relation between interfacial chemical reactions and bond strength in metal/porcelain specimens. For this study, three seperate metals : selected-gold, indium and tin were chosen ; each to be bonded to a seperate body porcelain. Bonding occurs when the metal is deposited to the body porcelain using a vacuum evaporator. The vacuum evaporator used $10^{-5}\sim10^{-6}$ Torr vacuum states for the evaporation of various metals (Au, Sn, In). Ion-beam-mixing of the porcelain/metal interfaces caused reactions when the Ar+ was implanted into thin films using a 80 KeV accelerator. These ion-beam-mixed specimens were then compared with an unmixed control group. An analysis of bond strength and ionic changes between the the metal and porcelain was performed by electron spectroscopy of chemical analysis (ESCA) and scratch test. The finding led to the following conclusions : 1. Light microscopic views of the scratch test : The ion-beam-mixed Au/porcelain specimen showed narrower scratched streams than the unmixed specimen. However, the Sn/porcelain, In/porcelain specimens showed no differences in the two conditions. 2. Acoustic emissions in scratch tests : The ion-mixed Au/porcelain, In/porcelain specimens showed signals closer to the metal/porcelain interfaces than unmixed specimens. Conversely, the ion-mixed Sn/porcelain specimen showed more critical signals in superficial portions than unmixed specimens. 3. After ion- beam-mixing, the Au/porcelain specimen showed apparently increased bond strength, and the In/porcelain specimen showed very slightly increased bond strength. However, the Sn/porcelain specimen showed no differences between ion mixed specimen and the unmixed one. 4. ESCA analysis : The ion-beam-mixed Au/porcelain specimen showed a higher peak separated value (4.3eV) than that of the unmixed specimen(3.65eV), the ion-beam-mixed In/porcelain specimen showed a higher peak separated value (9.43eV) than that of the unmixed specimen(7.6eV) and the ion-beam-mixed Sn/porcelain specimen showed a higher peak separated value (8.79eV) than that of the unmixed specimen(8.5eV). 5. Interfacial changes were observed in the ion-mixed Au/porcelain, In/porcelain and Sn/porcelain specimens. Especially, significant interfacial changes were measured in the ion- mixed Sn/porcelain specimen. Tin dioxide(SnO2) and a combination of pure tin and tin dioxide (Sn+SnO2) were produced. 6. In the Au/porcelain specimen, the interfacial chemical reaction showed increased bond strength between gold and porcelain substrate. But, in the In/porcelain, Sn/porcelain specimens, interfacial chemical reactions did not affected the bond strength between metal and porcelain substrate. Especially, bonding strength on the ion mixed Sn/porcelain specimen showed the least amount of difference.

  • PDF

EFFECT OF TYPE AND CEMENTATION METHOD OF POST-CORE ON MICROLEAKAGE (포스트코어의 종류와 접착방법이 미세누출에 미치는 영향)

  • Yun Myoung-Jae;Lee Sun-Hyung;Yang Jae-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.32 no.2
    • /
    • pp.225-233
    • /
    • 1994
  • The restorations of the severely damaged teeth by post core have been increased with the developement of endodontic procedures. But high failure rates of these procedures being reported, various restorative modifications were induced for successful treatments. Cast post-core and prefabricated post with core buildups are choice of treatment. The main causes of failure of the restorations are the fracture of post and core, root fracture, and recurrent caries due to microleakage. Recently, the acid etching technique and the use of dentin bonding agent at tooth surface to reduce the possible microleakage at the tooth-restoration interfaces were introduced. The object of this study was to measure and compare the microleakage by the types and cementation methods of post-core. For this study, forty extracted human anterior teeth were selected for specimen. After cleansing and routine endodontic procedures, anatomic crowns of each specimen were removed at the level of 2mm above the cementoenamel junction. Canals were preparated for post insertion and specimens were divided into four groups randomly. Post-cores were fabricated according to method for each group. Microleakage was measured by length of dye penetration at the tooth-restoration interfaces with measuring microscope at 50 magnification. Oneway ANOVA and t-test were performed for statistical analysis of resulting data. The following results were obtained from this study. 1. There wert significant statistical differences in degree of microleakage between each group (p<0.01). 2. Cast post-core cemented with ZPC (Group I) showed the most severe microleakage pattern$(1.5547{\pm}0.0872mm)$, and cast post-core cemented with adhesive resin cement after tooth surface treatment with dentin bonding agent (Group II) showed the least microleakage $(0.1497{\pm}0.0872mm)$. 3. Group IV revealed less dye penetrations than group III, but no statistical significance was seen between two groups.

  • PDF

Fault Tolerance for IEEE 1588 Based on Network Bonding (네트워크 본딩 기술을 기반한 IEEE 1588의 고장 허용 기술 연구)

  • Altaha, Mustafa;Rhee, Jong Myung
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.11 no.4
    • /
    • pp.331-339
    • /
    • 2018
  • The IEEE 1588, commonly known as a precision time protocol (PTP), is a standard for precise clock synchronization that maintains networked measurements and control systems. The best master clock (BMC) algorithm is currently used to establish the master-slave hierarchy for PTP. The BMC allows a slave clock to automatically take over the duties of the master when the slave is disconnected due to a link failure and loses its synchronization; the slave clock depends on a timer to compensate for the failure of the master. However, the BMC algorithm does not provide a fast recovery mechanism in the case of a master failure. In this paper, we propose a technique that combines the IEEE 1588 with network bonding to provide a faster recovery mechanism in the case of a master failure. This technique is implemented by utilizing a pre-existing library PTP daemon (Ptpd) in Linux system, with a specific profile of the IEEE 1588 and it's controlled through bonding modes. Network bonding is a process of combining or joining two or more network interfaces together into a single interface. Network bonding offers performance improvements and redundancy. If one link fails, the other link will work immediately. It can be used in situations where fault tolerance, redundancy, or load balancing networks are needed. The results show combining IEEE 1588 with network bonding enables an incredible shorter recovery time than simply just relying on the IEEE 1588 recovery method alone.

Effects of direct and indirect bonding techniques on bond strength and microleakage after thermocycling (직접 부착법과 간접 부착법이 열순환 후 부착강도와 미세누출에 미치는 영향에 대한 연구)

  • Ozturk, Firat;Babacan, Hasan;Nalcaci, Ruhi;Kustarci, Alper
    • The korean journal of orthodontics
    • /
    • v.39 no.6
    • /
    • pp.393-401
    • /
    • 2009
  • Objective: The purpose of this study was to compare the shear bond strength (SBS) of brackets and microleakage of a tooth-adhesive-bracket complex bonded with a direct and an indirect bonding technique after thermocycling. Methods: Fifty non-carious human premolars were divided into two equal groups. In the direct bonding group a light-cured adhesive and a primer (Transbond XT) was used. In the indirect-bonding group, a light-cured adhesive (Transbond XT) and chemical-cured primer (Sondhi Rapid Set) were used. After polymerization, the teeth were kept in distilled water for 24 hours and thereafter subjected to thermal cycling (500 cycles). For the microleakage evaluation, 10 teeth from each group were further sealed with nail varnish, stained with 0.5% basic fuchsin for 24 hours, and examined under a stereomicroscope. Fifteen teeth from each group were used for SBS testing with the universal testing machine and adhesive remnant index (ARI) evaluation. Data were analyzed using the Mann-Whitney U test, Chi-square test, and Fisher's exact test. Results: There were no statistical differences on SBS and microleakage between the two bonding techniques. The indirect bonding group had a significantly lower ARI score. Bracket failures were obtained between enamel-resin interfaces. Conclusions: The type of bonding technique did not significantly affect the amount of microleakage and SBS.

MICROLEAKAGE OF CURRENT DENTIN BONDING SYSTEMS (복합레진 수복시 복합용기 및 단일용기 상아질 접착제의 미세변연누출에 관한 연구)

  • Ryu, Ju-Hee;Park, Dong-Sung;Kwon, Hyuk-Choon
    • Restorative Dentistry and Endodontics
    • /
    • v.24 no.1
    • /
    • pp.55-66
    • /
    • 1999
  • The purpose of this study was to evaluate the microleakage of 5 current dentin bonding systems which are composed of 2 multi-bottle systems(Scotchbond Multi-Purpose, All Bond2) and 3 one-bottle systems(Single bond, One-Step, Prime & Bond). In this in vitro study, class V cavities were prepared on buccal and lingual surfaces of sixty extracted human premolars and molars on cementum margin. The experimental teeth were randomly divided into six groups of 10 samples (20 surfaces) each, Group 1 : Scotchbond Multi-Purpose ; Group 2 : All Bond 2 ; Group 3 : Single Bond ; Group 4 : One-Step ; Group 5 : Prime & Bond ; Group 6 : no bonding agent(control). The bonding agent and composite resin were applied for each group following the manufacturer's instructions. After 500 thermocycling between $5^{\circ}C$ and $55^{\circ}C$, the 60 teeth were placed in 2% Methylene blue dye for 24 hours, then rinsed with tab water. The specimen were embedded in clear resin, then sectioned buccolingually through the center of restoration with a low speed diamond saw. The dye penetration on each of the specimen were then observed with a stereomicroscope at ${\times}20$. The results of study were statistically analyzed using the Student-Newmann-Keul's Methods and the Mann-Whitney Rank Sum Test. The resin/dentin interfaces were examined under Scanning Electron Microscopy. The results of this study were as follows. 1. None of the dentin bonding systems used in this study showed significant difference in leakage values at both the enamel and the dentin margins (P>0.05). 2. In all groups except the control, leakage value seen at the enamel margin was significantly lower than that seen at the dentin margin (P<0.05). 3. Compared to the control group, all the groups treated with dentin bonding systems showed significantly lower leakage value at both enamel and dentin margins (P<0.05). 4. In the SEM view, gaps were observed in the composite resin / dentin interface in group 6 where no dentin bonding agent was used, and in all the other groups (group 1, 2, 3, 4, 5) composite resin, hybrid layer, and dentin were seen to be closely adhering to each other where there were no leakages. Well-developed resin tags 3~100${\mu}m$ in length infiltrated dentinal tubules past the hybrid layer and a hybrid layer 1~5${\mu}m$ thick had developed between the dentinal surface and the composite resin surface.

  • PDF