• 제목/요약/키워드: Bond order

검색결과 792건 처리시간 0.023초

A Study on Forecasting Accuracy Improvement of Case Based Reasoning Approach Using Fuzzy Relation (퍼지 관계를 활용한 사례기반추론 예측 정확성 향상에 관한 연구)

  • Lee, In-Ho;Shin, Kyung-Shik
    • Journal of Intelligence and Information Systems
    • /
    • 제16권4호
    • /
    • pp.67-84
    • /
    • 2010
  • In terms of business, forecasting is a work of what is expected to happen in the future to make managerial decisions and plans. Therefore, the accurate forecasting is very important for major managerial decision making and is the basis for making various strategies of business. But it is very difficult to make an unbiased and consistent estimate because of uncertainty and complexity in the future business environment. That is why we should use scientific forecasting model to support business decision making, and make an effort to minimize the model's forecasting error which is difference between observation and estimator. Nevertheless, minimizing the error is not an easy task. Case-based reasoning is a problem solving method that utilizes the past similar case to solve the current problem. To build the successful case-based reasoning models, retrieving the case not only the most similar case but also the most relevant case is very important. To retrieve the similar and relevant case from past cases, the measurement of similarities between cases is an important key factor. Especially, if the cases contain symbolic data, it is more difficult to measure the distances. The purpose of this study is to improve the forecasting accuracy of case-based reasoning approach using fuzzy relation and composition. Especially, two methods are adopted to measure the similarity between cases containing symbolic data. One is to deduct the similarity matrix following binary logic(the judgment of sameness between two symbolic data), the other is to deduct the similarity matrix following fuzzy relation and composition. This study is conducted in the following order; data gathering and preprocessing, model building and analysis, validation analysis, conclusion. First, in the progress of data gathering and preprocessing we collect data set including categorical dependent variables. Also, the data set gathered is cross-section data and independent variables of the data set include several qualitative variables expressed symbolic data. The research data consists of many financial ratios and the corresponding bond ratings of Korean companies. The ratings we employ in this study cover all bonds rated by one of the bond rating agencies in Korea. Our total sample includes 1,816 companies whose commercial papers have been rated in the period 1997~2000. Credit grades are defined as outputs and classified into 5 rating categories(A1, A2, A3, B, C) according to credit levels. Second, in the progress of model building and analysis we deduct the similarity matrix following binary logic and fuzzy composition to measure the similarity between cases containing symbolic data. In this process, the used types of fuzzy composition are max-min, max-product, max-average. And then, the analysis is carried out by case-based reasoning approach with the deducted similarity matrix. Third, in the progress of validation analysis we verify the validation of model through McNemar test based on hit ratio. Finally, we draw a conclusion from the study. As a result, the similarity measuring method using fuzzy relation and composition shows good forecasting performance compared to the similarity measuring method using binary logic for similarity measurement between two symbolic data. But the results of the analysis are not statistically significant in forecasting performance among the types of fuzzy composition. The contributions of this study are as follows. We propose another methodology that fuzzy relation and fuzzy composition could be applied for the similarity measurement between two symbolic data. That is the most important factor to build case-based reasoning model.

A Study for Shear Deterioration of Reinforced Concrete Beam-Column Joints Failing in Shear after Flexural Yielding of Adjacent Beams (보의 휨항복 후 접합부가 파괴하는 철근콘크리트 보-기둥 접합부의 전단내력 감소에 대한 해석적 연구)

  • Park, Jong-Wook;Yun, Seok-Gwang;Kim, Byoung-Il;Lee, Jung-Yoon
    • Journal of the Korea Concrete Institute
    • /
    • 제24권4호
    • /
    • pp.399-406
    • /
    • 2012
  • Beam-column joints are generally recognized as the critical regions in the moment resisting reinforced concrete (RC) frames subjected to both lateral and vertical loads. As a result of severe lateral load such as seismic loading, the joint region is subjected to horizontal and vertical shear forces whose magnitudes are many times higher than in column and adjacent beam. Consequently, much larger bond and shear stresses are required to sustain these magnified forces. The critical deterioration of potential shear strength in the joint area should not occur until ductile capacity of adjacent beams reach the design demand. In this study, a method was provided to predict the deformability of reinforced concrete beam-column joints failing in shear after the plastic hinges developed at both ends of the adjacent beams. In order to verify the deformability estimated by the proposed method, an experimental study consisting of three joint specimens with varying tensile reinforcement ratios was carried out. The result between the observed and predicted behavior of the joints showed reasonably good agreement.

A study for Shear Strength Characteristics of Frozen Soils under Various Temperature Conditions and Vertical Confining Pressures (동결온도조건 및 수직구속응력에 따른 동결토의 전단강도 변화에 관한 연구)

  • Lee, Joonyong;Choi, Changho
    • Journal of the Korean GEO-environmental Society
    • /
    • 제13권11호
    • /
    • pp.51-60
    • /
    • 2012
  • In order to characterize the shear strength of the frozen sand for foundation design in cold region and prediction of adfreeze bond strength, many researchers developed test techniques and carried out many tests to analyze shear strength properties of the frozen sand for half a century. However, many studies for shear strength properties of the frozen sand have been carried out with limited circumstances, even though shear strength of the froze sand can be affected by various influence factors such as soil type, temperature conditions, and magnitude of normal stress. In this study, direct shear test equipment was used to analyze the shear strength characteristics of the frozen sand. Direct shear test equipment was designed for cold weather, and the direct shear tests were carried out inside of large-scaled low temperature chamber. Three soil types-two uniform sands and one well graded soil were used to analyze the shear strength of the frozen sand with three different temperature conditions and three different vertical confining pressures. In this research, a series of direct shear tests for shear strength of the frozen sand have been conducted to demonstrate the efficiency of effectiveness of the test equipment and low temperature chamber. This research also showed that shear strength of the froze sand increased with decreasing temperature condition, but the influence of vertical confining pressure was insignificant to the shear strength of the frozen sand.

Evaluation of Field Applicability of Shotcrete for Fiber-net Integrated Tunnel Support System through Mock-up Test (목업 테스트를 통한 숏크리트용 섬유 그물망 일체형 터널 지보시스템의 현장 적용성 평가)

  • Kim, Jiyoung;Choi, Seongcheol
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • 제8권1호
    • /
    • pp.72-78
    • /
    • 2020
  • The present study developed shotcrete for fiber-net integrated tunnel support system, which consists of fiber-net support materials including netlike fiber and shotcrete and integration technology between support materials. In addition, in order to evaluate the field applicability of the developed tunnel support system and compare with the performance of steel fiber reinforced shotcrete, mock -up test was conducted on the mock -up structure. The test results show that in the case of shotcrete containing coarse aggregate(S20A5RP10-C), the excessive rebound rate occurred as the secondary shotcrete was dropped during construction due to the degradation in bond performance with fiber-net. Also, in the case of steel fiber reinforced shotcrete, the amount of cast shotcrete fell short of target value due to the fiber ball and the degradation of pumpability. On the other hand, the amount of cast mortar shotcrete(S20A5RP10-M) and the installation position of fiber-net were almost close to the target values, and the lower rebound rate occurred compared to the steel fiber reinforced shotcrete.

A Study on the oxidation characteristics of micro-algal bio diesel derived from Dunaliella tertiolecta LB999 (Dunaliella tertiolecta LB999 유래 바이오디젤의 산화특성 연구)

  • Lee, Don-Min;Lee, Mi-Eun;Ha, Jong-Han;Ryu, Jin-Young;Choi, Chang-Yong;Shim, Sang-Hyuk;Lim, Sang-Min;Lee, Choul-Gyun;Lee, Bong-Hee
    • Journal of Marine Bioscience and Biotechnology
    • /
    • 제7권1호
    • /
    • pp.1-10
    • /
    • 2015
  • Bio diesel has advantages to reduce GHG(Greenhouse Gas) compare with the fossil fuel by using oil comes from plant/animal sources and even waste such as used cook oil. The diversity of energy feeds brings the positive effects to secure the national energy mix. In this circumstance, micro-algae is one of the prospective source, though some technical barriers. We analyzed the bio diesel which was derived from Dunaliella tertiolecta LB999 through the BD100 quality specifications designated by the law. From that result, it is revealed that the oxidation stability is one of the properties to be improved. In order to find the reason for low oxidation stability, we analyzed the oxidation tendency of each FAME components through some methods(EN 14111, EN14112, EN16091). In this study, we could find the higher double bond FAME portion, the more oxidative property(C18:1${\ll}C18:3$) in bio diesel and main unsaturated FAME group is acted as the key component deciding the bio diesel's oxidation stability. It is proved experimentally that C18:3 FAME are oxidized easily under the modified accelerated oxidation test. We also figure out low molecular weight hydrocarbon and FAME were founded as a result of thermal degradation. Some alcohol and aldehydes were also made by FAME oxidation. In conclusion, it is necessary to find the way to improve the micro-algal bio diesel's oxidation stability.

An Experimental Study on Mechanical Properties of Ultra-High Strength Powder Concrete (압축강도 300MPa 이상의 초고강도 분체콘크리트 개발을 위한 실험적 연구)

  • Jo, Byung-Wan;Yoon, Kwang-Won;Park, Jung-Hoon;Kim, Heoun
    • Journal of the Korea Concrete Institute
    • /
    • 제22권3호
    • /
    • pp.287-295
    • /
    • 2010
  • In this study, ordinary Portland cement was used and the air void was minimized by using minute quartz as the filler. In addition, steel fibers were used to mitigate the brittle failure problem associated with high strength concrete. This study is in progress to make an Ultra-high strength powdered concrete (UHSPC) which has compressive strength over 300 MPa. To increase the strength of concrete, we have compared and analyzed the compressive strengths of the concretes with different mix proportions and curing conditions by selecting quartz sand, dolomite, bauxite, ferro silicon which have diameters less than 0.6 mm and can increase the bond strength of the transition zone. Ultra-high strength powdered concrete, which is different from conventional concrete, is highly influenced by the materials in the mix. In the study, the highest compressive strength of the powdered concrete was obtained when it is prepared with ferro silicon, followed in order by Bauxite, Dolomite, and Quartz sand. The amount of ferro silicon, when the highest strength was obtained, was 110%, of the weight of the cement. SEM analysis of the UHSPC showed that significant formation of C-S-H and Tobermorite due to high temperature and pressure curing. Production of Ultrahigh strength powdered concrete which has 28-day compressive strength upto 341MPa has been successfully achieved by the following factors; steel fiber reinforcement, fine particled aggregates, and the filling powder to minimize the void space, and the reactive materials.

Fatigue Behavior of Prestressed Concrete Beams Using FRP Tendons (FRP 긴장재를 이용한 프리스트레스트 콘크리트 보의 피로 거동)

  • Kim, Kyoung-Nam;Park, Sang-Yeol;Kim, Chang-Hoon
    • Journal of the Korea Concrete Institute
    • /
    • 제23권2호
    • /
    • pp.135-144
    • /
    • 2011
  • Recently, researches about fiber reinforced polymer (FRP) which has excellent durability, corrosion resistance, and tensile strength as a substitution material to steel tendon have been actively pursued. This study is performed to examine FRP tendon used prestressed beam's safety under service load. The specimen was a prestressed concrete beam with internal bonded FRP tendon. In order to compare the member fatigue capacity, a control specimen of a prestressed concrete beam with ordinary steel tendon was tested. A fatigue load was applied at a load range of 60%, 70%, and 80% of the 40% ultimate load, which was obtained though a static test. The fatigue load was applied as a 1~3 Hz sine wave with 4 point loading setup. Fatigue load with maximum 1 million cycles was applied. The specimen applied with a load ranging between 40~60% did not show a fatigue failure until 1 million cycles. However, it was found that horizontal cracks in the direction of tendons were found and bond force between the tendon and concrete was degraded as the load cycles increased. This fatigue study showed that the prestressed concrete beam using FRP tendon was safe under a fatigue load within a service load range. Fatigue strength of the specimen with FRP and steel tendon after 1 million cycles was 69.2% and 59.8% of the prestressed concrete beam's static strength, respectively.

Construction of Candida antarctica Lipase B Expression System in E. coli Coexpressing Chaperones (대장균에서의 Chaperone 동시 발현을 통한 Candida antarctica Lipase B 발현 시스템 구축)

  • Jung, Sang-Min;Lim, Ae-Kyung;Park, Kyung-Moon
    • KSBB Journal
    • /
    • 제23권5호
    • /
    • pp.403-407
    • /
    • 2008
  • Recently, Candida antarctica lipase B (CalB) draws attention from industries for various applications for food, detergent, fine chemical, and biodiesel, because of its characteristics as an efficient biocatalyst. Since many industrial processes carry out in organic solvent and at high temperature, CalB, which is stable under harsh condition, is in demand from many industries. In order to reform CalB promptly, the expression system which has advantages of ease to use and low cost for gene libraries screening was developed using E. coli. The E. coli strains, Rosettagami with competence for enhanced disulfide bond formation, Novablue, and $DH5{\alpha}$, were exploited in this study. To obtain the soluble CalB, the pCold I vector expressing the cloned gene at $15^{\circ}C$ and the chaperone plasmids containing groES/groEL, groES/groEL/tig, tig, dnaK/dnaJ/grpE, and dnaK/dnaJ/grpE/groES/groEL were used for coexpression of CalB and chaperones. The colonies expressing functional lipase were selected by employing the halo plate containing 1% tributyrin, and the CalB expression was confirmed by SDS-PAGE. E. coli Rosettagami and $DH5{\alpha}$ harbouring groES/groEL chaperones were able to express soluble CalB effectively. From a facilitative point of view, E. coli $DH5{\alpha}$ is more suitable for further mutation study.

Mechanical Properties of Friction Welded SM 45C-SF 45 Joints for Automobile Reverse Idle Gear Shaft Applications (자동차 후진기어용 축재(SM 45C-SF 45)의 이종마찰용접 특성)

  • Kong, Yu-Sik;Yun, Seong-Pil;Kim, Seon-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • 제34권1호
    • /
    • pp.85-90
    • /
    • 2010
  • Friction welding is a common practice to join axially symmetrical parts for automobile industry applications. The shaft for automobile reverse idle gear is generally produced by forging steel, SF 45. This method is not so good because of high cost of material and production. In this study, in order to investigate the possibility of application of SM 45C to SF 45 dissimilar friction welding, the dissimilar friction welded joints were performed using 20 mm diameter solid bar in forging steel(SF 45) to carbon steel(SM 45C). The optimal friction welding parameters were selected to ensure reliable quality welds on the basis of visual examination, tensile test, micro-Virkers hardness surveys of the bond of area and optical microstructure investigations for welded joint parts. Finally, post weld heat treatment(PWHT) of the high-frequency induction hardening was performed for the friction welded specimens under the optimal welding conditions. And then, the mechanical properties were compared for as-welded and PWHT in SM 45C to SF 45.

Efficient Mining of Frequent Subgraph with Connectivity Constraint

  • Moon, Hyun-S.;Lee, Kwang-H.;Lee, Do-Heon
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 한국생물정보시스템생물학회 2005년도 BIOINFO 2005
    • /
    • pp.267-271
    • /
    • 2005
  • The goal of data mining is to extract new and useful knowledge from large scale datasets. As the amount of available data grows explosively, it became vitally important to develop faster data mining algorithms for various types of data. Recently, an interest in developing data mining algorithms that operate on graphs has been increased. Especially, mining frequent patterns from structured data such as graphs has been concerned by many research groups. A graph is a highly adaptable representation scheme that used in many domains including chemistry, bioinformatics and physics. For example, the chemical structure of a given substance can be modelled by an undirected labelled graph in which each node corresponds to an atom and each edge corresponds to a chemical bond between atoms. Internet can also be modelled as a directed graph in which each node corresponds to an web site and each edge corresponds to a hypertext link between web sites. Notably in bioinformatics area, various kinds of newly discovered data such as gene regulation networks or protein interaction networks could be modelled as graphs. There have been a number of attempts to find useful knowledge from these graph structured data. One of the most powerful analysis tool for graph structured data is frequent subgraph analysis. Recurring patterns in graph data can provide incomparable insights into that graph data. However, to find recurring subgraphs is extremely expensive in computational side. At the core of the problem, there are two computationally challenging problems. 1) Subgraph isomorphism and 2) Enumeration of subgraphs. Problems related to the former are subgraph isomorphism problem (Is graph A contains graph B?) and graph isomorphism problem(Are two graphs A and B the same or not?). Even these simplified versions of the subgraph mining problem are known to be NP-complete or Polymorphism-complete and no polynomial time algorithm has been existed so far. The later is also a difficult problem. We should generate all of 2$^n$ subgraphs if there is no constraint where n is the number of vertices of the input graph. In order to find frequent subgraphs from larger graph database, it is essential to give appropriate constraint to the subgraphs to find. Most of the current approaches are focus on the frequencies of a subgraph: the higher the frequency of a graph is, the more attentions should be given to that graph. Recently, several algorithms which use level by level approaches to find frequent subgraphs have been developed. Some of the recently emerging applications suggest that other constraints such as connectivity also could be useful in mining subgraphs : more strongly connected parts of a graph are more informative. If we restrict the set of subgraphs to mine to more strongly connected parts, its computational complexity could be decreased significantly. In this paper, we present an efficient algorithm to mine frequent subgraphs that are more strongly connected. Experimental study shows that the algorithm is scaling to larger graphs which have more than ten thousand vertices.

  • PDF