Construction of Candida antarctica Lipase B Expression System in E. coli Coexpressing Chaperones

대장균에서의 Chaperone 동시 발현을 통한 Candida antarctica Lipase B 발현 시스템 구축

  • Jung, Sang-Min (Department of Chemical System Engineering, Hongik University) ;
  • Lim, Ae-Kyung (Department of Chemical System Engineering, Hongik University) ;
  • Park, Kyung-Moon (Department of Chemical System Engineering, Hongik University)
  • 정상민 (홍익대학교 화학시스템공학과) ;
  • 임애경 (홍익대학교 화학시스템공학과) ;
  • 박경문 (홍익대학교 화학시스템공학과)
  • Published : 2008.10.31

Abstract

Recently, Candida antarctica lipase B (CalB) draws attention from industries for various applications for food, detergent, fine chemical, and biodiesel, because of its characteristics as an efficient biocatalyst. Since many industrial processes carry out in organic solvent and at high temperature, CalB, which is stable under harsh condition, is in demand from many industries. In order to reform CalB promptly, the expression system which has advantages of ease to use and low cost for gene libraries screening was developed using E. coli. The E. coli strains, Rosettagami with competence for enhanced disulfide bond formation, Novablue, and $DH5{\alpha}$, were exploited in this study. To obtain the soluble CalB, the pCold I vector expressing the cloned gene at $15^{\circ}C$ and the chaperone plasmids containing groES/groEL, groES/groEL/tig, tig, dnaK/dnaJ/grpE, and dnaK/dnaJ/grpE/groES/groEL were used for coexpression of CalB and chaperones. The colonies expressing functional lipase were selected by employing the halo plate containing 1% tributyrin, and the CalB expression was confirmed by SDS-PAGE. E. coli Rosettagami and $DH5{\alpha}$ harbouring groES/groEL chaperones were able to express soluble CalB effectively. From a facilitative point of view, E. coli $DH5{\alpha}$ is more suitable for further mutation study.

본 연구에서는 현재 산업적 응용이 활발하게 이루어지고 있고, 여러 장점을 지닌 효소인 Candida antarctica에서 유래된 lipase B (CalB)의 신속한 개질을 위해 취급이 용이한 E. coli를 이용하여 CalB 발현시스템을 구축하였다. E. coli 발현 시스템에서 효소활성을 지니지 못하는 내포체를 생성하는 단점을 지니고 있어, soluble한 형태의 CalB 생성을 위해 저온 발현이 가능한 pCold I vector와 단백질 접힘을 도와주는 chaperone을 사용하여 CalB를 발현하였다. Liu 등(17)은 E. coli Origami2와 B, 그리고 $DH5{\alpha}$를 실험한 결과, Origami 균주에서만 CalB에 의한 halo의 형성이 관찰되었으나, 동 연구에서는 실험한 3종의 균주와 5종의 chaperone plasmid중 Rosettagami와 $DH5{\alpha}$에서 groES/groEL chaperone이 CalB와 동시에 발현되면 soluble한 형태의 Cal B가 발현됨을 관찰할 수 있었다. 또한 신속한 CalB의 발현시스템을 구축하기 위해서는 유전자 조작의 용이성 및 안정성에서 우월한 $DH5{\alpha}$가 Rosettagami에 비해 soluble한 CalB의 발현에 더욱 적합한 균주임이 관찰되었다. 즉 재조합 pCold plasmid와 pGro7 plasmid (groES/groEL)로 형질이 전환된 $DH5{\alpha}$가 CalB 발현시스템에 가장 적합하다.

Keywords

References

  1. Dannert Schmidt (1999), Recombinant microbial lipase for biotechnological applcations, Bioorganic & Medicinal Chemistry. 7, 2123-2130 https://doi.org/10.1016/S0968-0896(99)00141-8
  2. Jaeger, K. E., S. Ransac, B. W. Dijkstra, C. Colsoc, M. Henvel, and O. Misset (1994), Bacterial lipases, FEMS Microbiology Reviews. 15, 29-63 https://doi.org/10.1111/j.1574-6976.1994.tb00121.x
  3. Rapp P. and S. Backhaus (1992), Formation of extracellular lipases by filamentous fungi, yeast, and bacteria, Enzyme and Microbial Technology. 14, 938-943 https://doi.org/10.1016/0141-0229(92)90059-W
  4. Kim Sok-Joong, Sang-Min Jung, Yong-Cheol Park, and Kyungmoon Park (2007), Lipase catalyzed transesterification of soybean oil using ethyl acetate, an alternative acyl acceptor, Biotechnol. Bioprocess Eng. 12, 441-445 https://doi.org/10.1007/BF02931068
  5. Jaeger K. E., B. W. Dijkstra, and M. T. Reetz (1999), Bacterial biocatalysts: molecular biology, three-dimensional structures, and biotechnological applications of lipases, Annual Review of Microbiology. 53, 315-351 https://doi.org/10.1146/annurev.micro.53.1.315
  6. Jaeger K. E. and M. T. Reetz (1998), Microbial lipases form versatile tools for biotechnology, Trends in Biotechnology. 16, 396-403 https://doi.org/10.1016/S0167-7799(98)01195-0
  7. Svendsen A. (2000), Lipase protein engineering, Biochimica Biophysica Acta-Protein Structure and Molecular Enzymology. 1543, 223-238 https://doi.org/10.1016/S0167-4838(00)00239-9
  8. Schmid R. D. and R. Verger (1998), Lipases: interfacial enzymes with attractive applications, Angewandte Chemie (International ed. in English) 37, 1608-1633 https://doi.org/10.1002/(SICI)1521-3773(19980703)37:12<1608::AID-ANIE1608>3.0.CO;2-V
  9. Reetz M. T. (2002), Lipases as practical biocatalysts, Current Opinion in Chemical Biology. 6, 145-150 https://doi.org/10.1016/S1367-5931(02)00297-1
  10. Fukuda Hideki, Akihiko Kondo and Hideo Noda (2001), Biodiesel fuel production by transesterification of oils, Journal of Bioscience and Bioengineering. 92, 405-416 https://doi.org/10.1263/jbb.92.405
  11. Baneyx F. and Mujacic M. (2004), Recombinant protein folding and misfolding in Escherichia coli, Nature Biotechnology 22, 1399-1408 https://doi.org/10.1038/nbt1029
  12. Shin, Eun-Jung, So-Lim Park, Sung-Jong Jeon, Jin-Woo Lee, Young-Tae Kim, Yeon-Hee Kim, and Soo-Wan Nam (2006), Effect of molecular chaperones on the soluble expression of Alginate Lyase in E. coli. Biotechnol. Bioprocess Eng. 11, 414-419 https://doi.org/10.1007/BF02932308
  13. Invitrogen, http://www.invitrogen.com
  14. Novagen, http://www.merckbiosciences.com
  15. Takara, Cold shock expression system pCold DNA manual, pp1-9
  16. Takara, Chaperone plasmid set manual, pp1-7
  17. Liu, D., R. D. Schmid, and M. Rusnak (2006), Functional expression of candida antarctica lipase B in the Escherichia coli cytoplasm-a screening system for a frequently used biocatalyst, Appl Microbiol Biotechnol. 72, 1024-1032 https://doi.org/10.1007/s00253-006-0369-7