• Title/Summary/Keyword: Boltzmann transformation

Search Result 9, Processing Time 0.02 seconds

Transient Simulation of Graphene Sheets using a Deterministic Boltzmann Equation Solver

  • Hong, Sung-Min
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.17 no.2
    • /
    • pp.288-293
    • /
    • 2017
  • Transient simulation capability with an implicit time derivation method is a missing feature in deterministic Boltzmann equation solvers. The H-transformation, which is critical for the stable simulation of nanoscale devices, introduces difficulties for the transient simulation. In this work, the transient simulation of graphene sheets is reported. It is shown that simulation of homogeneous systems can be done without abandoning the H-transformation, as much as a specially designed discretization method is employed. The AC mobility and step response of the graphene sheet on the $SiO_2$ substrate are simulated.

Estimation of Moisture Diffusivity during Absorption by Boltzmann Transformation Method (Boltzmann법에 의한 목재 흡수시 확산계수 추정)

  • Kang, Wook;Chung, Woo Yang
    • Journal of the Korean Wood Science and Technology
    • /
    • v.37 no.1
    • /
    • pp.1-11
    • /
    • 2009
  • Although the exterior wood such as column may frequently contact with liquid water, little work has been found to measure liquid water absorption in wood. To investigate the moisture diffusivity of wood in the longitudinal direction including bound water and free water movement, liquid water absorption test was conducted at the room temperature. The order of magnitude for absorption coefficient and diffusivity was Japanese elm, horn beam, hemlock, spruce, radiata pine, and painted maple. The Boltzmann transformation method was used to determine the diffusivity from measured moisture content distributions in the absorption test. The shape of the curve representing the dependence of diffusivity with moisture content was similar in test samples. The diffusivity decreased with increasing moisture content until around the fiber saturation point and then increased at the nonhygroscopic region, which ranged from $10^{-10}$ to $10^{-7}m^2/s$.

Determination of Diffusion Coefficients of Boron from Borate Rods in Wood Using Boltzmann's Transformation

  • Ra, Jong-Bum
    • Journal of the Korean Wood Science and Technology
    • /
    • v.31 no.3
    • /
    • pp.24-29
    • /
    • 2003
  • This research was performed to investigate the diffusivity of borate rods in radiata pine (Pinus radiata D. Don) conditioned to 40 percent moisture content (MC). The deepest penetration of boron were observed in the longitudinal direction, followed by the radial and the tangential directions. The boron loading on the wood face adjacent to the borate rod tended to increase with diffusion time in all directions. To mathematically quantify boron diffusion, the diffusion coefficient of boron was determined using Boltzmann's transformation by assuming that it was a function of concentration only. The values of the longitudinal diffusion coefficients were between 1.3×10-8 cm2/sec and 9.2×10-8 cm2/sec. The radial diffusion coefficients were between 1.4×10-8 cm2/sec and 9.5×10-8 cm2/sec, and the tangential diffusion coefficients were between 5.2×10-9 cm2/sec and 1.3×10-8 cm2/sec. The differences of diffusion coefficients between the longitudinal direction and the radial direction were slight, although their concentration profiles were markedly different. This indicates that the amount of boron loading on the wood face adjacent the borate rod is one of the most important factor for boron penetration in wood with low MC.

The Variational Method Applied to the Neutron Transport Equation

  • Kim, Sang-Won;Pac, Pong-Youl
    • Nuclear Engineering and Technology
    • /
    • v.3 no.4
    • /
    • pp.203-208
    • /
    • 1971
  • Noether's theorem is applied to the one dimensional neutron transport equation. It is obtained the transformation rendering the functional of the one dimensional Boltzmann equation invariant. It is derived the law conserving the product of the directional flux and its adjoint flux. The possible types of the solution of the Boltzmann equation are discussed. The results are compared with the well-known solution.

  • PDF

Analysis of stream-aquifer using nonlinear Boussinesq equation (비선형 Boussinesq방정식을 이용한 유로대수층 해석)

  • 정재성;김민환;방경미
    • Journal of Environmental Science International
    • /
    • v.11 no.1
    • /
    • pp.57-61
    • /
    • 2002
  • To investigate the flow characteristics by the water stage variation between stream-aquifer, the new solution of nonlinear Boussinesq equation was derived and extended using the Boltzmann transformation. The soundness of the analytic solution obtained from this study was examined by the comparison with the linearized analytic solution and the numerical solution by finite difference method. And the movement, velocity, flowrate and volume of flow caused by the stage variation of stream and the existence of regional gradient were estimated. This new analytic solution can express the groundwater movement between stream-aquifer. So, it might be helpful to manage water environment.

Application of the Laplace transformation for the analysis of viscoelastic composite laminates based on equivalent single-layer theories

  • Sy, Ngoc Nguyen;Lee, Jaehun;Cho, Maenghyo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.13 no.4
    • /
    • pp.458-467
    • /
    • 2012
  • In this study, the linear viscoelastic response of a rectangular laminated plate is investigated. The viscoelastic properties, expressed by two basic spring-dashpot models, that is Kelvin and Maxwell models, is assumed in the range to investigate the influence of viscoelastic coefficients to mechanical behavior. In the present study, viscoelastic responses are performed for two popular equivalent single-layered theories, such as the first-order shear deformation theory (FSDT) and third-order shear deformation theory (TSDT). Compliance and relaxation modulus of time-dependent viscoelastic behavior are approximately determined by Prony series. The constitutive equation for linear viscoelastic material as the Boltzmann superposition integral equation is simplified by the convolution theorem of Laplace transformation to avoid direct time integration as well as to improve both accuracy and computational efficiency. The viscoelastic responses of composite laminates in the real time domain are obtained by applying the inverse Laplace transformation. The numerical results of viscoelastic phenomena such as creep, cyclic creep and recovery creep are presented.

Unsteady Groundwater Flow in Aquifer (대수층의 부정류에 관한 연구)

  • 이정규
    • Water for future
    • /
    • v.22 no.2
    • /
    • pp.233-239
    • /
    • 1989
  • The partial differential equation of the groundwater flow was reduced to an ordinary differential equation by the Boltzmann transformation. Its numerical solutions were obtained by the finite difference method and the new method to get the initial missing slope using the Richardson method and the finite difference equation was proposed. The solutions computed by the newly proposed method were compared with investigator's computations and they showed a satisfactory agreement and that the proposed method is easy and simple to get solutions.

  • PDF

Nonlinear free vibration analysis of moderately thick viscoelastic plates with various geometrical properties

  • Nasrin Jafari;Mojtaba Azhari
    • Steel and Composite Structures
    • /
    • v.48 no.3
    • /
    • pp.293-303
    • /
    • 2023
  • In this paper, geometrically nonlinear free vibration analysis of Mindlin viscoelastic plates with various geometrical and material properties is studied based on the Von-Karman assumptions. A novel solution is proposed in which the nonlinear frequencies of time-dependent plates are predicted according to the nonlinear frequencies of plates not dependent on time. This method greatly reduces the cost of calculations. The viscoelastic properties obey the Boltzmann integral law with constant bulk modulus. The SHPC meshfree method is employed for spatial discretization. The Laplace transformation is used to convert equations from the time domain to the Laplace domain and vice versa. Solving the nonlinear complex eigenvalue problem in the Laplace-Carson domain numerically, the nonlinear frequencies, the nonlinear viscous damping frequencies, and the nonlinear damping ratios are verified and calculated for rectangular, skew, trapezoidal and circular plates with different boundary conditions and different material properties.

RBM-based distributed representation of language (RBM을 이용한 언어의 분산 표상화)

  • You, Heejo;Nam, Kichun;Nam, Hosung
    • Korean Journal of Cognitive Science
    • /
    • v.28 no.2
    • /
    • pp.111-131
    • /
    • 2017
  • The connectionist model is one approach to studying language processing from a computational perspective. And building a representation in the connectionist model study is just as important as making the structure of the model in that it determines the level of learning and performance of the model. The connectionist model has been constructed in two different ways: localist representation and distributed representation. However, the localist representation used in the previous studies had limitations in that the unit of the output layer having a rare target activation value is inactivated, and the past distributed representation has the limitation of difficulty in confirming the result by the opacity of the displayed information. This has been a limitation of the overall connection model study. In this paper, we present a new method to induce distributed representation with local representation using abstraction of information, which is a feature of restricted Boltzmann machine, with respect to the limitation of such representation of the past. As a result, our proposed method effectively solves the problem of conventional representation by using the method of information compression and inverse transformation of distributed representation into local representation.