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Abstract

Noether’s theorem is applied to the one dimensional neutron transport equation.
It is obtained the transformation rendering the functional of the one dimensional
Boltzmann equation invariant. It is derived the law conserving the product of
the directional flux and its adjoint flux. The possible types of the solution of

the Boltzmann equation are discussed. The results are compared with the well-

known solution.
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I. Introduction

In recent years reactor physicists have used
variational methods with great success!?. Po-
mraning and Clark obtained an approximate
solution of the monoenergetic Boltzmann equa-
tion by the trial function method®. Kaplan
showed that there exists a close analogy
between certain variational principles in
reactor physics and these in classical mechan-
ics®?., Tavel, Clancy and Pomraning applied
the Noether’'s theorem, one of the variational
methods, to the diffusion equation, and they
constructed an analogy between the diffusion
They

also showed an analogy between the diffusion

equation and the classical mechanics®’.

equation and the time dependent Schroedinger
equation.

In this paper, we would like to apply the
Noether’s theorem to the one dimensional Bo-
ltzmann transport equation. Basically, the
fundamental idea of the Noether’s theorem is
to consider a variational characterization of a
given equation, the corresponding functional
of which is invariant under a continuous tra-
nsformation of both the independent and dep-
endent variables. Since the functional is in-
variant under the above transformation, its
This fact can be

used to derive certain relationships among the

first variation vanishes.

various variables of the problem under con-

sideration. In the second section, following
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Pomraning and Clark, we shall introduce a
functional of the one dimensional Boltzmann
transport equation. In the third section, a
brief derivation of the Noether’s theorem in
the case of the functional including two ind-
ependent and two dependent variables will be
presented. In the following section, we will
show how the theorem can be applied to the
one dimensional Boltzmann equation and com-
pare the result with the well-known solution.
In the final section, we will discuss the results
and offer several remarks.

II. Formalism

The equation of interest in reactor physics
is the Boltzmann equation which can be given
by

B¢(x, 1) =0, €))
where B is the one dimensional integro-diffe-
rential Boltzmann operator. In the case of the
constant cross-section, B is defined as

Associated with the Boltzmann equation is the
adjoint Boltzmann equation, written as
B*¢*(x, 1) =0, )]

where B* is referred to as the adjoint Boltz-
mann operator and is defined as

S ded#¢(x, 0 B**(x, 1)

Q
={ g dxdpg*(x, (DBYCE, 1) ©)

Q2
The integrals in Eq. (3) extend over all of

the phase space of interest.

The one dimensional monoenergetic Boltz-
mann equation with the constant cross-section
is given by

ag(x, 1) _cf!? N
#T+¢Cx: ) 2§_1¢(x»# ddg' =0 (4
By the defintion, the adjoint to Eq. (4) is
easily shown to be
— a¢'*(x_/"_) * ___is. 1 * i
e P A MC AN A A CHY
Xdp' =0 )

The boundary condition on the flux are(for the
nonre-entrant problem under consideration)

¢ (g, =0, (O<p=1D
¢ (b, )=0, (—1=p<O)
¢*(a, =0, (—1<p=0)
o, =0, (O<p=<1)

where a = x < b.
Eq. (5) may then be written in terms of ¢(x,
). If uis replaced by —¢ and -4’ by ¢’ in Eq.
(5), we immediately see that
¢*(x, =¢Cx, —p0). 6

Eq. (6) gives us a simple relation between the
directional flux and its adjoint flux.

Let us consider the functional F describing
this system. The functional F is given by
Pomraning and Clark as follows

Fiy, ¢1={Jaxdug* By

Q2
=§dedy ¢ B¥g*.

2
By equating the first variation of F with
respect to ¢ and ¢* equal to zero, we can get
Eq. (4) and Eq. (5). Thus rendering this
functional stationary is equivalent to solving
both the Boltzmann equation and its adjoint
equation.

III. Noether’s Theorem

Let us introduce two dimensional Noether's
theorem®. Following Tavel, Clancy and Po-
mraning?, we seek the first variation of the

integral
F=({L0%, 0 ¢ 0, 9 0, 9 0,
2
Pu(%, 1, P (%, 1, Pu*(x, p)ldxdp, D
when ¢(x, p), ¢*(x,p) and the limits of in-
tegration are allowed to vary. We consider a
family of transformations depending on a
parameter e,
xH(x, g, 9(x, 1), PF(x, pw)ie)=at(x, pie),
@
g (%, 1, (%, 1, 9 (0, )3 =pt (s, pse),
)]
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o, (a0, (e, ) ) =g, pie),
o
$*1(x, pr, ox, ), $*(x, 1) 1) =P (x, pie),
an
These transformations are assumed one-to-one
continuously differentiable (with respect toe)
and further are assumed to reduce to the
identity transformations for ¢=0.
The integral F' in the transformed variables
is written as

F(53=UL[’6+, ;l+, ¢+(x+#+;5)’ ¢*+<x+, ,u+ )
of

gt (xt, ptie), ¢r(at ptie),
x x

AN CANTSTIN g[;*i(x“L, ghie)]
2 z
Xdxtdypt, (12
where the region of integration 9" maps on to
the original region g by the transformations
Egs. (8) and (9). Making a change of integ-

ration variable in Eq. (12) from 9" to p, we
have

F@:SSLD‘*, g gt (at, ptie),
2
PrCaT, pie), 97, (a% ptie),
¢::(x+, rtie), ¢:+(x+, rhie),

N LN D),
¢#+(x ,ptie)] FC) ) dxdp (13
The first variation of Eq. (13) is formed by
Since the

limits of integration are independent of &, the

differentiation with respect to e.

2/0e operator can be taken inside the integral.
We find

aF:ﬁ[L,ax+L”aﬂ+L¢a¢+L¢*a¢*+L¢,a(¢,)

2
+L¢#5(¢”)+L¢t5(¢):+L¢i5<¢F*)
+L(8%),+L(8p)  1dxdp ery)
where we have introduce the variation notation

_ oF(e) -

oF=e [2E) (15)
=, [ 097(x", ptie)

ap=e (Wm0 ) g

= D
s(p=e! a%—(;’;@ Lemo OB
5(¢.)= e W"“(%’f ;-82»-} D)
5(p:*)= o —a-d’-g—::’ K. )emo @
3(pat)= o ﬁbzicg—:'ﬂf;—?—— NG
pr=d LD ) (22)
op=e 2ELLHY (23)

In Eqs. (16) through (23), the partial deriva-
tives with respect to e are taken with x and p
(not x* and p*) held constant. As indicated by
Tavel et al¥. in the one dimensional case, at
this point one would like to write 6(¢,)=(_3¢).,
8(pu)=C08¢),, 8(p.*)=(8¢*) and 5(¢,*>=(84*)
in Eq. (14) and perform integrations by parts.
However, the processes of differentiations
with respect to x and p# do not commute with
computing the variation, ie (¢ )x(0¢)s,
(8¢4) 258, 6(9:* )35 (8¢% )5 and 8(gu*)35(8¢") e
The reason that these 'two operators do not
commute(in most variational calculations they
do) is that an e-dependent transformation has
been applied to the independent as well as the
dependent variable (in most variational calc-
ulations dx=0 and é&g=0). Because of this
commutation problem, we introduce a second
type of variation I?S_gb and 84* defined as

- + .
sp=e (22 (g,ep,e) ,?s:(), (20
s [ 0¥ (x, pie)

59 —e[ Oe j e=0, (25)

Comparison of Eqs. (16) and (17), and Eqgs.
(24) and (25) shows that the difference bhet-
ween 8¢ and 6¢* and 5¢ and &¢* is that 5¢
and 5¢* have fixed argument points, x and
#, whereas the argument points x* and u* for
8¢ and 6¢* depend on e. Use of the chain
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rule establishes the identity
3¢=09-+ 0%+ .o, (26)
5¢*=6¢*+¢,*5x+¢:6;1 @0
Similarly, we define

pome(2ttme) | (28)
Hg)=e [Qﬂﬂ(a’i_"—ilj o (29)
Bpme [(REp) ) (30
pmy=e (LT y

The barred variations are connected with the
unbarred ones as follows

8(9)=0(d)+ Pesdx+drubps, (32)
5(¢y)=5(‘/’ﬂ)+¢yx5x+¢##5#: (33
8(e*)= (8¢ )+ pas* 55+ Pun*Sp, (34)
5(¢#*)=g(‘r”#*D'}"‘/’ﬂx*ax‘*‘Sb##*aﬂ (35)
We have the useful commutation property
3($)=(5)s, (36)
8= (3¢, €19
8(p:*)= (84", (38)
3(gu*)= (39", (39

Using Eqs. (24) through (39) and following
Courant and Hilbert, > we obtain

51::”@ 01+ Lyt Lysot L ¥op* +L 5 ()

+L¢, 5(¢#)+L¢ 00 *)+L

LG+ Lo, Jdxdp
=SHE'2¢L' r aa¢L ai a¢,,]5¢
7
25 aa¢

*5(¢p*)

8 oL _ 9 *
3
9x 0¢, ¥ or 89!)*] ¢

+-—(L5x+L ¢ Bp-+L 5"

w5y |

We now suppose that the transformations gi-
ven by Egs. (8), (9), (10) and (11) are such
that the first variation of F is zero for an
arbitrary region of integration. Then Eq. (40)
yields

Pl B

9 oL

3;4 a¢#] ¢

9L 9 9L _ 8 L y5.

0 by 5k
+a—x(L5x+L¢x6¢+L¢’:5¢ )
0 S *s —
g Lot Ly 81,75 )] dxdp=0 (4D
Since Eq. (41) holds for arbitrary region g,

the integrand must vanish: i.e.

9 oL 5 oL
(59 "% 29 o5 dg ¢

yrdL 9 dL _ o
9% ox 04.F op a¢*

+2 (Lot L, gL 5

]5¢*

0 s %o Y
+§;(L5y+L ¢”6</;+L 5100 )=0. (42)

If the function I is the Lagrangian for an
equation of interest, Eq. (42) becomes

0 Ky ®s 1k
2 Lox+ L, Fp+ L o)

0 _ Y S TR
+W(L5y L ¢,,5¢+L ¢”5¢ )=0 (43)

because, in this case, it holds
AL _ 9 oL _ 2 oL _
o0 Tr s a# 29, =0, 44
oL 0 BL 2 aL
9% 0% 34.F  op 99.* =0 (45)

Eq. (43) is Noether's theorem for the two

dimensional case (two independent and two

dependent variables).

VI. Application to the Boltzmann Equation

The Monoenergetic Boltzmann transport eq-
uation in the slab geometry is given by

By =2t g, 5 i)
ap'=0 (46)
and the associated functional F,

F=({{¢*Byaxdu=| S[ W*ﬁs&% 0 44ty

— 54 9, wrdiVaxdp D
Functional F should be invariant by certain
transformations. Now we consider the trans-
formations

xt(x,p, ¢, ¢tie)=x, (4%
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PMCH N RIS (49
P (x, 1, ¢, p*1e) = gexp(ea), (50)
G*(x, 1, @, p*se) =¢*exp(—ea), GBY

where a is a constant. ‘These particular tran-
sformations obviously leave the functional F
invariant. From Eqgs. (22) and (23), we have
8x=0, (52)
Sp=0. (53)

From Eqs. (26), (27), (29), (30), (52) and
we have

8p="0¢— 0% — Sp=>8p=cag, (54
8p* =g* — g, *ox—¢,*6u=04* =—ea¢*. (55)

Thus Noether’ s theorem in our case yields
0 #5 0%
5x—(l,5x~l~L ¢,5¢+L ¢15¢ D
]
PR S— L '* * = B
+ o (Lap+ ¢Fa¢+L%a¢ D=0 (56)

where L= pg{)*rg%‘{-gb* gb—%—gb*s‘igb(x, wdy.

By the definition of L, we obtain

— oL _ %
LSAS—— a¢x _lu‘lb s (57)
L¢:=L¢#=L¢t=0. (58)

Substituting Eqs. (52), (83), (54), (85), (B7)
and (58) into Eq. (56), we have

%(ea,ugbgb*) =0. (59

From this, it is noted that ¢¢* is independent
of the space variables x; i.e., ¢¢* is conse-
rved. Noting that ¢*(x, p)=¢(x, —p), we have
$Cx, ¢*Cx, W =¢(x, ¢(x, —p=Glg) (60)
Since the left hand side is an even function
of p, G(p) is also an even function. From
Eq. (46), it can be inferred that the solution
of the Boltzmann equation should be of the
types.
L ¢z, ) =g(pe s,
where f(y) is an odd function.
2. ¢u(x, p)=¢,(ple >,
where v is chosen to satisfy
$u(%, =) =9 L(—pdes
The second type of the solution shows that

¢(x; 1) can be solved by the method of separ-
ation of variables. Putting ¢,=¢,(p)e ™ > into
Eq. (46), we see that g(x) should be equal
to x. This result is in good agreement with
the well-known solution.® A more detailed
calculation of this type is given in “Linear

Transport Theory” by Case and Zweifel. ©

V. Remarks

In this work, our main purpose has been to
apply the Noether's theorem to the one dime-
nsional Boltzmann equation. We have treated
the problem in the case of constant cross-sec-~
Thus we have found
the fact that the product of the directional
flux and its adjoint flux is conserved. The

tion and source f{ree.

generalization of our case to the practical one
would be more interesting. If any other tra-
nsformation rendering the functional invariant
be sought, the corresponding new result would
be derived. It should be noted that we can
get an approximate solution by substituting
the first type of solution inte the original

equation.
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