• 제목/요약/키워드: Boltzmann

검색결과 497건 처리시간 0.021초

다중완화시간 가상경계볼쯔만법을 이용한 실린더 주위의 난류유동해석 (NUMERICAL STUDY ON TURBULENT FLOW OVER CYLINDER USING IMMERSED BOUNDARY LATTICE BOLTZMANN METHOD WITH MULTI RELAXATION TIME)

  • 김형민
    • 한국전산유체공학회지
    • /
    • 제15권2호
    • /
    • pp.21-27
    • /
    • 2010
  • Immersed boundary lattice Boltzmann method (IBLBM) has been applied to simulate a turbulent flow over circular cylinder in a flow field effectively. Although IBLBM is very effective method to simulate the flow over a complex shape of obstacle in the flow field regardless of the constructed grids in the calculation domain, the results, however, become numerically unstable in high reynolds number flow. The most effective suggestion to archive the numerical stability in high Reynolds number flow is applying the multiple relaxation time (MRT) model instead of single relaxation time(SRT) model in the collision term of lattice Boltzmann equation. In the research MRT model for IBLBM was introduced and comparing the numerical results obtained by applying SRT and MRT. The hydraulic characteristic of cylinder in a flow field between two parallel plate at the range of $Re{\leqq}2000$represented and it is also compared the drag and lifting coefficients of the cylinder calculated by IBLBM with SRT and MRT model.

Modeling of Degenerate Quantum Well Devices Including Pauli Exclusion Principle

  • 이은주
    • 대한전자공학회논문지SD
    • /
    • 제39권2호
    • /
    • pp.14-26
    • /
    • 2002
  • Pauli 배타 원리를 적용한 축퇴 상태의 양자 우물 소자 모델링을 제안하였다. 양자 우물에서의 다중 에너지 부준위 각각에 대한 Boltzmann 방정식의 collision 항들을 Pauli 배타 원리를 적용하여 전개하고 이들을 Schrodinger 방정식과 Poisson 방정식과 결합하여 비선형적인 시스템의 모델을 설정하였다. 시스템의 해를 직접적으로 구하기 위하여 유한 차분법과 Newton-Raphson method를 적용하여 양자 우물의 다중 에너지 부준위 각각에 대한 캐리어 분포 함수를 구하였다. Si MOSFET의 inversion 영역에 본 모델을 적용하여 전자 밀도의 증가에 따라 양자 우물의 에너지 분포 함수가 Boltzmann 분포 함수의 형태로부터 Fermi-Dirac 분포 함수의 형태로 변화함을 제시하고, 소자 크기가 감소할수록 소자 모델링에 있어서의 Pauli 배타 원리의 중요성과 함께 본 모델의 정당함과 그 해석 방법의 효율성을 보여주었다.

수정된 내부 에너지 비평형 1차 외삽 경계조건을 적용한 열 유동 격자 볼츠만 모델에 관한 수치적 연구 (Numerical Simulation of Thermal Lattice Boltzmann Model with a Modified In-Ternal Energy Non-Equilibrium First-Order Extrapolation Boundary Condition)

  • 정해권;김래성;이현구;이재룡;하만영
    • 대한기계학회논문집B
    • /
    • 제31권7호
    • /
    • pp.620-627
    • /
    • 2007
  • In this paper, we adapt a modified internal energy non-equilibrium first-order extrapolation thermal boundary condition to the thermal lattice Boltzmann model (TLBM). This model is the double populations approach to simulate hydrodynamic and thermal fields. The bounce-back boundary condition which is a traditional boundary condition of lattice Boltzmann method has only a first order in numerical accuracy at the boundary and numerical instability. A non-equilibrium first-order extrapolation boundary condition has been verified to be of better numerical stability than the bounce-back boundary condition and this boundary condition is proved to be of second-order accuracy for the flat boundaries. The two-dimensional natural convection flow in a square cavity with Pr=0.71 and various Rayleigh numbers are simulated. The results are found to be in good agreement with those of previous studies.

MCS-BEq에 의한 CH4기체에서 전자에너지 분포함수 (Electron Energy Distribution function in CH4 by MCS-BEq)

  • 김상남
    • 전기학회논문지P
    • /
    • 제62권1호
    • /
    • pp.18-22
    • /
    • 2013
  • This paper describes the information for quantitative simulation of weakly ionized plasma. We must grasp the meaning of the plasma state condition to utilize engineering application and to understand materials of plasma state. Using quantitative simulations of weakly ionized plasma, we can analyze gas characteristic. In this paper, the electron transport characteristic in $CH_4$ has been analysed over the E/N range 0.1~300[Td], at the 300[$_{\circ}\;K$] by the two term approximation Boltzmann equation method and Monte Carlo Simulation. Boltzmann equation method has also been used to predict swarm parameter using the same cross sections as input. The behavior of electron has been calculated to give swarm parameter for the electron energy distribution function has been analysed in $CH_4$ at E/N=10, 100 for a case of the equilibrium region in the mean energy. A set of electron collision cross section has been assembled and used in Monte Carlo simulation to predict values of swarm parameters. The result of Boltzmann equation and Monte Carlo Simulation has been compared with experimental data by Ohmori, Lucas and Carter. The swarm parameter from the swarm study are expected to sever as a critical test of current theories of low energy scattering by atoms and molecules.

차분격자볼츠만법의 압축성 유체모델을 도입한 중력류의 흐름현상에 관한 연구 (Study on Analysis of Gravity Currents by the Finite Difference Boltzmann Method using Two-dimensional Compressible fluid Model)

  • 손유식;김원철;강호근
    • 한국해양공학회지
    • /
    • 제16권5호
    • /
    • pp.15-20
    • /
    • 2002
  • In this research, the finite difference lattice Boltzmann method(FDLBM) is used to analyze gravity currents in the lock exchange configuration that occur in many natural and man-made situations. At a lock those are seen when a gate is suddenly opened, and, in the atmosphere, when the thunderstorm outflows make a cold front. At estuaries in the ocean, the phenomenon is found between fresh water from a river and salt water in the sea. Since such interesting phenomena were recognized, pioneers have challenged to make them clear by conducing both experiments and analysis. Most of them were about the currents of liquid or Boussinesq fluids, which are assumed as incompressible. Otherwise, the difference in density of two fluids is small. The finite difference lattice Boltzmann method has been a powerful tool to simulate the flow of compressible fluids. Also, numerical predictions using FDLBM to clarify the gravity currents of compressible fluids exhibit all features, but typically observed in experimental flows near the gravity current head, including the lobe-and-cleft structure at the leading edge.

Lattice Boltzmann Method을 이용한 적혈구의 정적인 모양과 동적변형에 대한 연구 (SINGLE-PHASE MULTI-COMPONENT SIMULATION OF STATIC SHAPE AND DYNAMIC DEFORMATION OF RED BLOOD CELLS USING LATTICE BOLTZMANN METHOD)

  • ;김용현;이준상
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 학술대회
    • /
    • pp.186-196
    • /
    • 2008
  • The dependence of the rheological properties of blood on shape, aggregation, and deformability of red blood cells (RBCs) has been investigated using hybrid systems by coupling fluid with solid models. We present a simple approach for simulating blood as a multi-component fluid, in which RBCs are modeled as droplets of acquired biconcave shape. We used lattice Boltzmann method (LBM) due to its excellent numerical stability as a simulation tool. The model enables us to control the droplet static shape by imposing non-isotropic surface tension force on the interface between the two components. The use of the proposed non-isotropic surface tension method is justified by the Norris hypothesis. This hypothesis states that the shape of the RBC is due to a non-uniform interfacial surface tension force acting on the RBC periphery. This force is caused by the unbalanced distribution of the lipid molecules on the surface of the RBC. We also used the same concept to investigate the dynamic shape change of the RBC while flowing through the microvasculature, and to explore the physics of the Fahraeus, and the Fahraeus-Lindqvist effects.

  • PDF

Lattice Boltzmann Method을 이용한 적혈구의 정적인 모양과 동적변형에 대한 연구 (SINGLE-PHASE MULTI-COMPONENT SIMULATION OF STATIC SHAPE AND DYNAMIC DEFORMATION OF RED BLOOD CELLS USING LATTICE BOLTZMANN METHOD)

  • ;김용현;이준상
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년 추계학술대회논문집
    • /
    • pp.186-196
    • /
    • 2008
  • The dependence of the rheological properties of blood on shape, aggregation, and deformability of red blood cells (RBCs) has been investigated using hybrid systems by coupling fluid with solid models. We present a simple approach for simulating blood as a multi-component fluid, in which RBCs are modeled as droplets of acquired biconcave shape. We used lattice Boltzmann method (LBM) due to its excellent numerical stability as a simulation tool. The model enables us to control the droplet static shape by imposing non-isotropic surface tension force on the interface between the two components. The use of the proposed non-isotropic surface tension method is justified by the Norris hypothesis. This hypothesis states that the shape of the RBC is due to a non-uniform interfacial surface tension force acting on the RBC periphery. This force is caused by the unbalanced distribution of the lipid molecules on the surface of the RBC. We also used the same concept to investigate the dynamic shape change of the RBC while flowing through the microvasculature, and to explore the physics of the Fahraeus, and the Fahraeus-Lindqvist effects.

  • PDF

격자 볼츠만 방법을 이용한 덕트 내 쌍둥이 직렬배열 사각 실린더에 의한 Aeolian 순음소음 고찰 (Investigation Into Aeolian Tone Noise by Twin Tandem Square Cylinders in duct Using Lattice Boltzmann Method)

  • 이송준;정철웅
    • 한국소음진동공학회논문집
    • /
    • 제24권12호
    • /
    • pp.962-968
    • /
    • 2014
  • The lattice Boltzmann method(LBM) has attracted attention as an alternative numerical algorithm for solving fluid mechanics since the end of the 90's. In these days, its intrinsic unsteadiness and rapid increase in computing power make the LBM be more applicable for computing flow-induced noise as well as fluid dynamics. The lattice Boltzmann method is a weakly compressible scheme, so we can get information about both aerodynamics and aeroacoustics from single simulation. In this paper, numerical analysis on Aeolian tone noise generated by tandem-twin square cylinders in duct is performed using the LBM. For simplicity, laminar two-dimensional fluid models are used. To verify the validity and accuracy of the current numerical techniques, numerical results for the laminar duct and the cylinder flows are compared with the analytical solution and the measurement, respectively. Then, aerodynamic noise of the twin tandem square cylinders is investigated. It is shown that the aerodynamic noise from the twin tandem square cylinders can be reduced by controlling the distance between the cylinders.

시뮬레이션에 의한 CH4 기체의 전리 및 확산계수 (Ionization and Diffusion Coefficients in CH4 Gas by Simulation)

  • 김상남
    • 전기학회논문지P
    • /
    • 제63권4호
    • /
    • pp.317-321
    • /
    • 2014
  • This paper describes the information for quantitative simulation of weakly ionized plasma. We must grasp the meaning of the plasma state condition to utilize engineering application and to understand materials of plasma state. Using quantitative simulations of weakly ionized plasma, we can analyze gas characteristic. In this paper, the electron Ionization and diffusion Coefficients in $CH_4$ has been analysed over the E/N range 0.1~300[Td], at the 300[$^{\circ}K$] by the two term approximation Boltzmann equation method and Monte Carlo Simulation. Boltzmann equation method has also been used to predict swarm parameter using the same cross sections as input. The behavior of electron has been calculated to give swarm parameter for the electron energy distribution function has been analysed in $CH_4$ at E/N=10, 100 for a case of the equilibrium region in the mean energy. A set of electron collision cross section has been assembled and used in Monte Carlo simulation to predict values of swarm parameters. The result of Boltzmann equation and Monte Carlo Simulation has been compared with experimental data by Ohmori, Lucas and Carter. The swarm parameter from the swarm study are expected to sever as a critical test of current theories of low energy scattering by atoms and molecules.