• Title/Summary/Keyword: Body sensor network

Search Result 159, Processing Time 0.025 seconds

Development of a Monitoring System Based on the Cooperation of Multiple Sensors on SenWeaver Platform (센위버 플랫폼 기반의 다중센서 협업을 이용한 모니터링 시스템 개발)

  • Kwon, Cha-Uk;Cha, Kyung-Ae
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.15 no.2
    • /
    • pp.91-98
    • /
    • 2010
  • This study proposes a monitoring system that effectively watches surroundings by cooperating the various sensor information including image information on a sensor network system. The monitoring system proposed in this paper is developed to watch certain intruders to the internal spaces through the interested region for exceptional time by installing cameras, PIR(Pyroelectric Infrared Ray) sensor and body detectors in such interested regions. Moreover the monitering system is implemented based on the SenWeaver plateform which is a integrated development tools for building wireless sensor network system. In the results of the test that was applied to a practically experimental environment by implementing some interfaces for the proposed system, it was considered that it is possible to watch surroundings effectively using the image information obtained from cameras and multiple sensor information acquisited from sensor nodes.

Design of U-Healthcare Monitoring System based on Mobile Device (모바일 디바이스 기반의 U-헬스케어 모니터링 시스템 구현)

  • Park, Joo-Hee
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.49 no.1
    • /
    • pp.46-53
    • /
    • 2012
  • The WBAN technology means a short distance wireless network which provides each device's interactive communication by connecting devices inside and outside of body located within 3 meters. Standardization on the physical layer, data link layer, network layer and application layer is in progress by IEEE 802.15.6 TG BAN. It is necessary to develop the WBAN core technology that sensor node device, WBAN middleware and WBAN application service for WBAN environment. In this paper we designed the medical message structure and implemented medical application for purpose of vital information reliability. The message structure was proposed for WBAN environment and application can be check biometric information from BN on smart device through WBAN gateway.

Implementation of a Monitering System for Solitary Citizens Using ZigBee Solution (ZigBee Solution를 이용한 독거노인 모니터링 시스템 구현)

  • Jeon, Byoung-Chan;Ryu, Sang-Ryul;Choi, Gyoo-Seok
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.8 no.6
    • /
    • pp.41-48
    • /
    • 2008
  • The realization of a monitoring system for senior citizens living alone through wireless sensor network. Due to the recent advances in medical science, people live longer than ever before which accelerates the number of senior citizens. The high rate of the old people in population causes some changes in the form of families, which results in the increasing number of old people living by themselves. This also causes a lot of social problems concerning aging population. For example, people found a dead body of 83-year-old, who had lived alone, after he passed away a month before. There is a national monitoring service for the old people of their daily lives, but the application of such system is very limited. Considering this, the current paper focuses on the realization of a monitoring system for senior citizens living alone through wireless sensor network. The system consists of ZigBee sensor network, which is based on standard IEEE 802.15.4. and the system uses Tmote Sky sensor mote made by Moteive, which is installed with TinyOS. The circumstances information data will be saved on DB and a household will be monitored through a Webpage or Mobile.

  • PDF

Control Packet Transmission Decision Method for Wearable Sensor Systems (웨어러블 센서 시스템에서의 제어 패킷 전송 결정 기법)

  • Yu, Daeun;Kim, Namgi
    • Journal of Internet Computing and Services
    • /
    • v.16 no.5
    • /
    • pp.11-17
    • /
    • 2015
  • In the general transmission power control model that is used for wearable sensor systems, if RSSI value gets out of the Target RSSI Margin, then the sink node finds new transmission power by using TPC(Transmission Power Control) Algorithm. At this time, the sink node sends the control packet to the sensor node for delivering the newly calculated transmission power. However, when the wireless network channel condition is poor, even it is consuming a lot of control packets, the sink node could not find an appropriate transmission power so it only waste of energy. Therefore, we proposed a new control packet transmission decision method that the sink node changes the transmission power when the wireless network channel condition is stabilized. It makes waste of energy decline. In this paper, we apply control packet transmission decision method to Binary TPC algorithms and analyze the results to evaluate the proposed method. We propose three methods that judge the state of wireless network channel. We experiment that methods and analysis the results.

Basic Study on Monitoring System of Reservoir and Leeve Using Wireless Sensor Network (무선센서 네트워크 계측을 이용한 저수지 및 제방 계측시스템 구축에 관한 기초연구)

  • Yoo, Chanho;Kim, IkHoon;Lee, Seungjoo;Hwang, Jungsoon;Baek, Seungcheol
    • Journal of the Korean GEO-environmental Society
    • /
    • v.19 no.1
    • /
    • pp.25-30
    • /
    • 2018
  • Conventional monitoring method is used for evaluation of the reservoir and levee at the highest height sections. In recent years, automated measurement technology has been developed, and the measurement results are transmitted, collected and stored in real time into management office. Despite the development of real time monitoring technology, the measurement results are not used directly or indirectly with facility management at real time. Recently, as wireless sensor network measurement technology has been developed based on internet of things, this study proposed a real - time measurement and evaluation system based on wireless sensor network technology in the reservoir structure. As a result of the seepage analysis for the application, it was confirmed that the volumetric water content changes together with the change of the seepage line inside the embankment body according to the change of the water level of the embankment. In other words, the applicability of the measurement system with the volumetric water ratio set as the sensor node was verified.

Design and Evaluation of Wireless Sensor Node Application for u-Healthcare (u-헬스케어를 위한 무선센서노드 어플리케이션 구현 및 성능 평가)

  • Lee, Dae-Seok;Chung, Wan-Young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.10a
    • /
    • pp.518-521
    • /
    • 2007
  • The functional wireless sensor node for u-healthcare application was developed. The developed sensor node can check the abnormality of ECG in some simple software in ROM of microprocess in the sensor node. The ECG signal is one of very important health signal form human body, and wavelike signal which is sampled as a sampling frequency between 100 and 400 Hz for digitalization, so the wireless data dor ECG signal is some heavy in Zigbee communication. Thus the sensor send the ECG signal to other sensor nodes or base station when it find abnormality in ECG signal is key technology to reduce the traffic between sensor nodes in wireless sensor network for u-healthcare, The sensor node does not need to transmit ECG data all time in wireless sensor network and to server. Using these sensor nodes, the healthcare system can dramatically reduce wireless data packet overload, the power consumption of battery in the sensor nodes and thus increase the reliability of the wireless system.

  • PDF

Heartbeat-signal Monitoring System Using Fine-pressure Sensor (미압 센서를 이용한 심박신호 모니터링 시스템)

  • Lee, Jun-Yeon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.4
    • /
    • pp.1266-1271
    • /
    • 2010
  • In this paper, we implemented a heartbeat-signal monitoring system that can measure and check the heartbeat of a human body in any time and anywhere. The implemented prototype is composed of heartbeat measurement terminal, gateway, and server that collect and process data. The terminal compose sensor network using ZigBee protocol. And server acquire heartbeat signal through differentiating collected data two times, and store above data to database and manage it. We can understand the status of examinee's heart without restriction and self-awareness. Through experiment, we confirmed the possibility of ubiquitous healthcare system based on sonsor network using the ZigBee.

Security Issues in Combined Protocol Between RFID Application and Wireless Sensor Network (RFID와 무선 센서네트워크를 융합한 프로토콜에서의 보안 문제)

  • Kim, Jung Tae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.10a
    • /
    • pp.154-155
    • /
    • 2013
  • This paper presents a user authentication scheme for healthcare application using wireless sensor networks, where wireless sensors are used for patients monitoring. These medical sensors' sense the patient body data and transmit it to the professionals. Since, the data of an individual are highly vulnerable; it must ensures that patients medical vital signs are secure, and are not exposed to an unauthorized person. In this regards, we propose a user authentication scheme for healthcare application using medical sensor networks. The proposed scheme includes: a novel two-factor user authentication, where the healthcare professionals are authenticated before access the patient's body data; a secure session key is establish between the patient sensor node and the professional at the end of user authentication. Furthermore, the analysis shows that the proposed scheme is safeguard to various practical attacks and achieves efficiency at low computation cost.

  • PDF

Efficient Transmission Structure and Key Management Mechanism Using Key Provisioning on Medical Sensor Networks (의료 센서 네트워크에서의 효율적인 전송 구조 및 Key Provisioning을 사용한 키 관리 기법 연구)

  • Seo, Jae-Won;Kim, Mi-Hui;Chae, Ki-Joon
    • The KIPS Transactions:PartC
    • /
    • v.16C no.3
    • /
    • pp.285-298
    • /
    • 2009
  • According to the development of ubiquitous technologies, sensor networks is used in various area. In particular, medical field is one of the significant application areas using sensor networks, and recently it has come to be more important according to standardization of the body sensor networks technology. There are special characteristics of their own for medical sensor networks, which are different from the one of sensor networks for general application or environment. In this paper, we propose a hierarchical medical sensor networks structure considering own properties of medical applications, and also introduce transmission mechanism based on hierarchical structure. Our mechanism uses the priority and threshold value for medical sensor nodes considering patient's needs and health condition. Through this way Cluster head can transmit emergency data to the Base station rapidly. We also present the new key establishment mechanism based on key management mechanism which is proposed by L. Eschenauer and V. Gligor for our proposed structure and transmission mechanism. We use key provisioning for emergency nodes that have high priority based on patients' health condition. This mechanism guarantees the emergency nodes to establish the key and transmit the urgent message to the new cluster head more rapidly through preparing key establishment with key provisioning. We analyze the efficiency of our mechanism through comparing the amount of traffic and energy consumption with analysis and simulation with QualNet simulator. We also implemented our key management mechanism on TmoteSKY sensor board using TinyOS 2.0 and through this experiments we proved that the new mechanism could be actually utilized in network design.

Pulse wave analysis system using wrist type oximeter for u-Health service (u-Health 서비스 지원을 위한 착용형 옥시미터를 이용한 맥파 분석 시스템)

  • Jung, Sang-Joong;Seo, Yong-Su;Chung, Wan-Young
    • Journal of Sensor Science and Technology
    • /
    • v.19 no.1
    • /
    • pp.17-24
    • /
    • 2010
  • This paper describes a real time reliable monitoring method and analysis system using wrist type oximeter for ubiquitous healthcare service based on IEEE 802.15.4 standard. Photoplethysmograph(PPG) is simple and cost effective technique to measure blood volume change. In order to obtain and monitor physiological body signals continuously, a small size and low power consumption wrist type oximeter is designed for the measurement of oxygen saturation of a patient unobtrusively. The measured data is transferred to a central PC or server computer by using wireless sensor nodes in wireless sensor network for storage and analysis purposes. LabVIEW server program is designed to monitor stress indicator from heart rate variability(HRV) and process the measured PPG to accelerated plethysmograph(APG) by appling second order derivatives in server PC. These experimental results demonstrate that APG can precisely describe the features of an individual's PPG and be used as estimation of vascular elasticity for blood circulation.